Using spatial domain techniques developed by the authors and Myunghyun Oh in the context of parabolic conservation laws, we establish under a natural set of spectral stability conditions nonlinear asymptotic stability with decay at Gaussian rate of spatially periodic traveling waves of systems of reaction–diffusion equations. In the case that wave-speed is identically zero for all periodic solutions, we recover and slightly sharpen a well-known result of Schneider obtained by renormalization/Bloch transform techniques; by the same arguments, we are able to treat the open case of nonzero wave-speeds to which Schneiderʼs renormalization techniques do not appear to apply.
@article{AIHPC_2011__28_4_471_0, author = {Johnson, Mathew A. and Zumbrun, Kevin}, title = {Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction{\textendash}diffusion equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {471--483}, publisher = {Elsevier}, volume = {28}, number = {4}, year = {2011}, doi = {10.1016/j.anihpc.2011.05.003}, mrnumber = {2823880}, zbl = {1246.35034}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.003/} }
TY - JOUR AU - Johnson, Mathew A. AU - Zumbrun, Kevin TI - Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction–diffusion equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 471 EP - 483 VL - 28 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.003/ DO - 10.1016/j.anihpc.2011.05.003 LA - en ID - AIHPC_2011__28_4_471_0 ER -
%0 Journal Article %A Johnson, Mathew A. %A Zumbrun, Kevin %T Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction–diffusion equations %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 471-483 %V 28 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.003/ %R 10.1016/j.anihpc.2011.05.003 %G en %F AIHPC_2011__28_4_471_0
Johnson, Mathew A.; Zumbrun, Kevin. Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction–diffusion equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 4, pp. 471-483. doi : 10.1016/j.anihpc.2011.05.003. http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.003/
[1] The dynamics of modulated wavetrains, Mem. Amer. Math. Soc. 199 no. 934 (2009) | MR
, , , ,[2] On the structure of the spectra of periodic traveling waves, J. Math. Pures Appl. 72 (1993), 415-439 | MR | Zbl
,[3] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Springer-Verlag, Berlin (1981) | MR | Zbl
,[4] Nonlinear stability of periodic traveling waves of viscous conservation laws in the generic case, J. Differential Equations 249 no. 5 (2010), 1213-1240 | MR | Zbl
, ,[5] Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg (1985) | MR
,[6] Stability and diffusive dynamics on extended domains, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin (2001), 563-583 | MR | Zbl
, , ,[7] Stability and asymptotic behavior of traveling-wave solutions of viscous conservation laws in several dimensions, Arch. Ration. Mech. Anal. 196 no. 1 (2010), 1-20, Arch. Ration. Mech. Anal. 196 no. 1 (2010), 21-23 | MR | Zbl
, ,[8] Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. vol. 44, Springer-Verlag, New York, Berlin (1983) | MR | Zbl
,[9] B. Sandstede, A. Scheel, G. Schneider, H. Uecker, Diffusive mixing of periodic wave trains in reaction–diffusion systems with different phases at infinity, draft, 2010. | MR
[10] Nonlinear diffusive stability of spatially periodic solutions – abstract theorem and higher space dimensions, Proceedings of the International Conference on Asymptotics in Nonlinear Diffusive Systems, Sendai, 1997, Tohoku Math. Publ. vol. 8, Tohoku Univ., Sendai (1998), 159-167 | MR | Zbl
,[11] Diffusive stability of rolls in the two-dimensional real and complex Swift–Hohenberg equation, Comm. Partial Differential Equations 24 no. 11–12 (1999), 2109-2146 | MR | Zbl
,Cité par Sources :