The uniform Korn–Poincaré inequality in thin domains
[Lʼinégalité de Korn–Poincaré dans les domaines minces]
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 3, pp. 443-469.

On étudie lʼinégalité de Korn–Poincaré :

u W 1,2 (S h ) C h D(u) L 2 (S h ) ,
dans les domaines S h de type des coques dʼépaisseurs dʼordre h autour dʼune hypersurface compacte sans bord et regulière S de 𝐑 n . Par D(u), on réfère à la partie symétrique du gradient ∇u et on suppose la condition au bord :
u·n h =0onS h .
On démontre que C h reste uniformément borné car h0, pour tout champ de vecteurs dans une famille de cônes donnée (faisant un angle<π/2, uniforme en h) autour du complément orthogonal des extensions de champs de vecteurs de Killing sur S.On montre que cette condition est optimale comme tout champ de Killling u sur S admet une famille dʼextensions u h sur S h pour lesquelles le rapport u h W 1,2 (S h ) /D(u h ) L 2 (S h ) tend à lʼinfini comme h0, même si les S h ne possèdent pas de symmetrie axiale.

We study the Korn–Poincaré inequality:

u W 1,2 (S h ) C h D(u) L 2 (S h ) ,
in domains S h that are shells of small thickness of order h, around an arbitrary compact, boundaryless and smooth hypersurface S in 𝐑 n . By D(u) we denote the symmetric part of the gradient ∇u, and we assume the tangential boundary conditions:
u·n h =0onS h .
We prove that C h remains uniformly bounded as h0, for vector fields u in any family of cones (with angle<π/2, uniform in h) around the orthogonal complement of extensions of Killing vector fields on S.We show that this condition is optimal, as in turn every Killing field admits a family of extensions u h , for which the ratio u h W 1,2 (S h ) /D(u h ) L 2 (S h ) blows up as h0, even if the domains S h are not rotationally symmetric.

DOI : 10.1016/j.anihpc.2011.03.003
Classification : 74B05
Mots-clés : Korn inequality, Killing vector fields, Thin domains, Poincaré inequality
@article{AIHPC_2011__28_3_443_0,
     author = {Lewicka, Marta and M\"uller, Stefan},
     title = {The uniform {Korn{\textendash}Poincar\'e} inequality in thin domains},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {443--469},
     publisher = {Elsevier},
     volume = {28},
     number = {3},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.03.003},
     mrnumber = {2795715},
     zbl = {1253.74055},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.003/}
}
TY  - JOUR
AU  - Lewicka, Marta
AU  - Müller, Stefan
TI  - The uniform Korn–Poincaré inequality in thin domains
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 443
EP  - 469
VL  - 28
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.003/
DO  - 10.1016/j.anihpc.2011.03.003
LA  - en
ID  - AIHPC_2011__28_3_443_0
ER  - 
%0 Journal Article
%A Lewicka, Marta
%A Müller, Stefan
%T The uniform Korn–Poincaré inequality in thin domains
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 443-469
%V 28
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.003/
%R 10.1016/j.anihpc.2011.03.003
%G en
%F AIHPC_2011__28_3_443_0
Lewicka, Marta; Müller, Stefan. The uniform Korn–Poincaré inequality in thin domains. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 3, pp. 443-469. doi : 10.1016/j.anihpc.2011.03.003. http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.003/

[1] R. Chen, P. Li, On Poincaré type inequalities, Trans. Amer. Math. Soc. 349 no. 4 (1997), 1561-1585 | MR | Zbl

[2] W. Chen, J. Jost, A Riemannian version of Kornʼs inequality, Calc. Var. Partial Differential Equations 14 (2002), 517-530 | MR | Zbl

[3] P.G. Ciarlet, Mathematical Elasticity, vol. 1: Three Dimensional Elasticity, North-Holland, Amsterdam (1993)

[4] K.O. Friedrichs, On the boundary-value problems of the theory of elasticity and Kornʼs inequality, Ann. of Math. 48 no. 2 (1947), 441-471 | MR | Zbl

[5] G. Friesecke, R. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), 1461-1506 | MR | Zbl

[6] G. Friesecke, R. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal. 180 no. 2 (2006), 183-236 | MR | Zbl

[7] G. Geymonat, P. Suquet, Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci. 8 (1986), 206-222 | MR | Zbl

[8] G. Griso, Asymptotic behaviour of curved rods by the unfolding method, Math. Methods Appl. Sci. 27 (2004), 2081-2110 | MR | Zbl

[9] G. Griso, Asymptotic behavior of structures made of plates, Anal. Appl. 3 (2005), 325-356 | MR | Zbl

[10] G. Griso, Decompositions of displacements of thin structures, J. Math. Pures Appl. 89 (2008), 199-223 | MR | Zbl

[11] C.O. Horgan, Kornʼs inequalities and their applications in continuum mechanics, SIAM Rev. 37 no. 4 (1995), 491-511 | MR | Zbl

[12] D. Iftimie, G. Raugel, G. Sell, Navier–Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J. 56 no. 3 (2007), 1083-1156 | MR | Zbl

[13] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 1, Interscience Publishers (1963) | MR | Zbl

[14] R.V. Kohn, M. Vogelius, A new model for thin plates with rapidly varying thickness. II: A convergence proof, Quart. Appl. Math. 43 (1985), 1-22 | MR | Zbl

[15] A. Korn, Solution générale du problème dʼéquilibre dans la théorie de lʼélasticité dans le cas où les efforts sont donnés à la surface, Ann. Fac. Sci. Toulouse Ser. 2 10 (1908), 165-269 | EuDML | JFM | Numdam | MR

[16] A. Korn, Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bull. Int. Cracovie Akademie Umiejet, Classe des Sci. Math. Nat. (1909), 705-724 | JFM

[17] A. Kufner, Weighted Sobolev Spaces, Wiley and Sons (1985) | MR | Zbl

[18] V. Kondratiev, O. Oleinik, On Kornʼs inequalities, C. R. Acad. Sci. Paris Ser. I 308 (1989), 483-487 | MR

[19] P. Petersen, Riemannian Geometry, Springer (2006) | MR | Zbl

[20] G. Raugel, Dynamics of partial differential equations on thin domains, CIME Course, Montecatini Terme, Lecture Notes in Math. vol. 1609, Springer-Verlag (1995), 208-315 | MR | Zbl

[21] G. Raugel, G.R. Sell, Navier–Stokes equations on thin 3D domains. I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503-568 | MR | Zbl

[22] V.A. Solonnikov, V.E. Scadilov, A certain boundary value problem for the stationary system of Navier–Stokes equations, Boundary Value Problems of Mathematical Physics, 8 Tr. Mat. Inst. Steklova 125 (1973), 196-210 | MR | Zbl

[23] M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish Inc. (1979) | Zbl

Cité par Sources :