On étudie lʼinégalité de Korn–Poincaré :
We study the Korn–Poincaré inequality:
Mots clés : Korn inequality, Killing vector fields, Thin domains, Poincaré inequality
@article{AIHPC_2011__28_3_443_0, author = {Lewicka, Marta and M\"uller, Stefan}, title = {The uniform {Korn{\textendash}Poincar\'e} inequality in thin domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {443--469}, publisher = {Elsevier}, volume = {28}, number = {3}, year = {2011}, doi = {10.1016/j.anihpc.2011.03.003}, mrnumber = {2795715}, zbl = {1253.74055}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.003/} }
TY - JOUR AU - Lewicka, Marta AU - Müller, Stefan TI - The uniform Korn–Poincaré inequality in thin domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 443 EP - 469 VL - 28 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.003/ DO - 10.1016/j.anihpc.2011.03.003 LA - en ID - AIHPC_2011__28_3_443_0 ER -
%0 Journal Article %A Lewicka, Marta %A Müller, Stefan %T The uniform Korn–Poincaré inequality in thin domains %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 443-469 %V 28 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.003/ %R 10.1016/j.anihpc.2011.03.003 %G en %F AIHPC_2011__28_3_443_0
Lewicka, Marta; Müller, Stefan. The uniform Korn–Poincaré inequality in thin domains. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 3, pp. 443-469. doi : 10.1016/j.anihpc.2011.03.003. http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.003/
[1] On Poincaré type inequalities, Trans. Amer. Math. Soc. 349 no. 4 (1997), 1561-1585 | MR | Zbl
, ,[2] A Riemannian version of Kornʼs inequality, Calc. Var. Partial Differential Equations 14 (2002), 517-530 | MR | Zbl
, ,[3] Mathematical Elasticity, vol. 1: Three Dimensional Elasticity, North-Holland, Amsterdam (1993)
,[4] On the boundary-value problems of the theory of elasticity and Kornʼs inequality, Ann. of Math. 48 no. 2 (1947), 441-471 | MR | Zbl
,[5] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), 1461-1506 | MR | Zbl
, , ,[6] A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal. 180 no. 2 (2006), 183-236 | MR | Zbl
, , ,[7] Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci. 8 (1986), 206-222 | MR | Zbl
, ,[8] Asymptotic behaviour of curved rods by the unfolding method, Math. Methods Appl. Sci. 27 (2004), 2081-2110 | MR | Zbl
,[9] Asymptotic behavior of structures made of plates, Anal. Appl. 3 (2005), 325-356 | MR | Zbl
,[10] Decompositions of displacements of thin structures, J. Math. Pures Appl. 89 (2008), 199-223 | MR | Zbl
,[11] Kornʼs inequalities and their applications in continuum mechanics, SIAM Rev. 37 no. 4 (1995), 491-511 | MR | Zbl
,[12] Navier–Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J. 56 no. 3 (2007), 1083-1156 | MR | Zbl
, , ,[13] Foundations of Differential Geometry, vol. 1, Interscience Publishers (1963) | MR | Zbl
, ,[14] A new model for thin plates with rapidly varying thickness. II: A convergence proof, Quart. Appl. Math. 43 (1985), 1-22 | MR | Zbl
, ,[15] Solution générale du problème dʼéquilibre dans la théorie de lʼélasticité dans le cas où les efforts sont donnés à la surface, Ann. Fac. Sci. Toulouse Ser. 2 10 (1908), 165-269 | EuDML | JFM | MR
,[16] Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bull. Int. Cracovie Akademie Umiejet, Classe des Sci. Math. Nat. (1909), 705-724 | JFM
,[17] Weighted Sobolev Spaces, Wiley and Sons (1985) | MR | Zbl
,[18] On Kornʼs inequalities, C. R. Acad. Sci. Paris Ser. I 308 (1989), 483-487 | MR
, ,[19] Riemannian Geometry, Springer (2006) | MR | Zbl
,[20] Dynamics of partial differential equations on thin domains, CIME Course, Montecatini Terme, Lecture Notes in Math. vol. 1609, Springer-Verlag (1995), 208-315 | MR | Zbl
,[21] Navier–Stokes equations on thin 3D domains. I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503-568 | MR | Zbl
, ,[22] A certain boundary value problem for the stationary system of Navier–Stokes equations, Boundary Value Problems of Mathematical Physics, 8 Tr. Mat. Inst. Steklova 125 (1973), 196-210 | MR | Zbl
, ,[23] A Comprehensive Introduction to Differential Geometry, Publish or Perish Inc. (1979) | Zbl
,Cité par Sources :