I present an inverse function theorem for differentiable maps between Fréchet spaces which contains the classical theorem of Nash and Moser as a particular case. In contrast to the latter, the proof does not rely on the Newton iteration procedure, but on Lebesgue's dominated convergence theorem and Ekeland's variational principle. As a consequence, the assumptions are substantially weakened: the map F to be inverted is not required to be
Je présente un théorème d'inversion pour des applications différentiables entre espaces de Fréchet, qui contient le théorème classique de Nash et Moser. Contrairement à ce dernier, la démonstration donnée ici ne repose pas sur l'algorithme itératif de Newton, mais sur le théorème de convergence dominée de Lebesgue et le principe variationnel d'Ekeland. Comme conséquence, les hypothèses sont substantiellement affaiblies : on ne demande pas que l'application F à inverser soit de classe
@article{AIHPC_2011__28_1_91_0, author = {Ekeland, Ivar}, title = {An inverse function theorem in {Fr\'echet} spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {91--105}, publisher = {Elsevier}, volume = {28}, number = {1}, year = {2011}, doi = {10.1016/j.anihpc.2010.11.001}, mrnumber = {2765512}, zbl = {1256.47037}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2010.11.001/} }
TY - JOUR AU - Ekeland, Ivar TI - An inverse function theorem in Fréchet spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 91 EP - 105 VL - 28 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2010.11.001/ DO - 10.1016/j.anihpc.2010.11.001 LA - en ID - AIHPC_2011__28_1_91_0 ER -
Ekeland, Ivar. An inverse function theorem in Fréchet spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 1, pp. 91-105. doi : 10.1016/j.anihpc.2010.11.001. https://www.numdam.org/articles/10.1016/j.anihpc.2010.11.001/
[1] Opérateurs Pseudo-différentiels et Théorème de Nash–Moser, Interéditions et Éditions du CNRS, Paris (1991), Grad. Stud. Math. vol. 82, Amer. Math. Soc., Rhode Island (2000) | MR | Zbl
, ,[2] Small divisors, Dokl. Akad. Nauk CCCP 137 (1961), 255-257, Dokl. Akad. Nauk CCCP 138 (1961), 13-15 | MR
,[3] Small divisors I, Izvestia Akad. Nauk CCCP 25 (1961), 21-86
,[4] Small divisors II, Ouspekhi Math. Nauk 18 (1963), 81-192
,[5] Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions, Arch. Ration. Mech. Anal. 195 (2010), 609-642 | MR | Zbl
, ,[6] Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Math. vol. 107, Cambridge Univ. Press (1993) | MR | Zbl
,[7] Sur les problèmes variationnels, C. R. Acad. Sci. Paris 275 (1972), 1057-1059, C. R. Acad. Sci. Paris 276 (1973), 1347-1348 | MR | Zbl
,[8] Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443-474 | MR | Zbl
,[9] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (1) 7 (1982), 65-222 | MR | Zbl
,[10] On the conservation of quasi-periodic motion for a small variation of the Hamiltonian function, Dokl. Akad. Nauk CCCP 98 (1954), 527-530 | MR
,[11] A new technique for the construction of solutions of nonlinear differential equations, Proc. Natl. Acad. Sci. USA 47 (1961), 1824-1831 | MR | Zbl
,[12] A rapidly convergent iteration method and nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa 20 (1966), 266-315 | EuDML | Numdam | MR | Zbl
,[13] The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20-63 | MR | Zbl
,[14] Conjugate Duality and Optimization, SIAM/CBMS Monograph Ser. vol. 16, SIAM Publications (1974) | MR | Zbl
,[15] On Nash's implicit functional theorem, Comm. Pure Appl. Math. 13 (1960), 509-530 | MR | Zbl
,- Towards Nonlinearity: The p-Regularity Theory, Entropy, Volume 27 (2025) no. 5, p. 518 | DOI:10.3390/e27050518
- Beyond Cauchy–Kowalewsky: a Picard–Lindelöf theorem for smooth PDE, Journal of Fixed Point Theory and Applications, Volume 27 (2025) no. 2 | DOI:10.1007/s11784-025-01184-5
- On the second boundary value problem for a class of fully nonlinear flow III, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-00983-6
- Well-posedness and regularity for a polyconvex energy, ESAIM: Control, Optimisation and Calculus of Variations, Volume 29 (2023), p. 67 | DOI:10.1051/cocv/2023041
- Metric Regularity for Set-Valued Maps in Fréchet-Montel Spaces. Implicit Mapping Theorem, Set-Valued and Variational Analysis, Volume 31 (2023) no. 2 | DOI:10.1007/s11228-023-00679-y
- On Ekeland's variational principle for interval-valued functions with applications, Fuzzy Sets and Systems, Volume 436 (2022), p. 152 | DOI:10.1016/j.fss.2021.10.003
- Global inversion for metrically regular mappings between Banach spaces, Revista Matemática Complutense, Volume 35 (2022) no. 1, p. 25 | DOI:10.1007/s13163-020-00380-w
- On Lipschitz implicit function theorems in Banach spaces and applications, Journal of Mathematical Analysis and Applications, Volume 494 (2021) no. 2, p. 124589 | DOI:10.1016/j.jmaa.2020.124589
- Inverse mapping theorem in Fréchet spaces, Journal of Optimization Theory and Applications, Volume 190 (2021) no. 1, p. 300 | DOI:10.1007/s10957-021-01885-0
- Existence of Lagrange Multipliers under Gâteaux Differentiable Data with Applications to Stochastic Optimal Control Problems, SIAM Journal on Optimization, Volume 30 (2020) no. 1, p. 319 | DOI:10.1137/18m1223411
- An Inverse Mapping Theorem in Fréchet-Montel Spaces, Set-Valued and Variational Analysis, Volume 28 (2020) no. 1, p. 195 | DOI:10.1007/s11228-020-00536-2
- Morse theory methods for a class of quasi-linear elliptic systems of higher order, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 4 | DOI:10.1007/s00526-019-1577-1
- On the Second Boundary Value Problem for a Class of Fully Nonlinear Flows I, International Mathematics Research Notices, Volume 2019 (2019) no. 18, p. 5539 | DOI:10.1093/imrn/rnx278
- Surjectivity in Fréchet Spaces, Journal of Optimization Theory and Applications, Volume 182 (2019) no. 1, p. 265 | DOI:10.1007/s10957-019-01482-2
- Inversion of Nonsmooth Maps between Banach Spaces, Set-Valued and Variational Analysis, Volume 27 (2019) no. 4, p. 921 | DOI:10.1007/s11228-018-0499-y
- On Nash–Moser–Ekeland Inverse Mapping Theorem, Vietnam Journal of Mathematics, Volume 47 (2019) no. 3, p. 527 | DOI:10.1007/s10013-019-00342-w
- Ekeland's inverse function theorem in graded Fréchet spaces revisited for multifunctions, Journal of Mathematical Analysis and Applications, Volume 457 (2018) no. 2, p. 1403 | DOI:10.1016/j.jmaa.2017.07.040
- Exact controllability for quasilinear perturbations of KdV, Analysis PDE, Volume 10 (2017) no. 2, p. 281 | DOI:10.2140/apde.2017.10.281
- A Nash–Moser–Hörmander implicit function theorem with applications to control and Cauchy problems for PDEs, Journal of Functional Analysis, Volume 273 (2017) no. 12, p. 3875 | DOI:10.1016/j.jfa.2017.09.016
- On primal regularity estimates for set-valued mappings, Journal of Mathematical Analysis and Applications, Volume 438 (2016) no. 1, p. 444 | DOI:10.1016/j.jmaa.2016.02.016
- On the Nash-Moser Iteration Technique, Recent Developments of Mathematical Fluid Mechanics (2016), p. 443 | DOI:10.1007/978-3-0348-0939-9_23
- On the second boundary value problem for Lagrangian mean curvature flow, Journal of Functional Analysis, Volume 269 (2015) no. 4, p. 1095 | DOI:10.1016/j.jfa.2015.05.003
- The Nash-Moser Iteration Technique with Application to Characteristic Free-Boundary Problems, Hyperbolic Conservation Laws and Related Analysis with Applications, Volume 49 (2014), p. 311 | DOI:10.1007/978-3-642-39007-4_13
- Metric Regularity in Infinite Dimensions, Implicit Functions and Solution Mappings (2014), p. 277 | DOI:10.1007/978-1-4939-1037-3_5
- Metric and Topological Tools, Calculus Without Derivatives, Volume 266 (2013), p. 1 | DOI:10.1007/978-1-4614-4538-8_1
- Elements of Differential Calculus, Calculus Without Derivatives, Volume 266 (2013), p. 117 | DOI:10.1007/978-1-4614-4538-8_2
- Elements of Convex Analysis, Calculus Without Derivatives, Volume 266 (2013), p. 187 | DOI:10.1007/978-1-4614-4538-8_3
- Elementary and Viscosity Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 263 | DOI:10.1007/978-1-4614-4538-8_4
- Circa-Subdifferentials, Clarke Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 357 | DOI:10.1007/978-1-4614-4538-8_5
- Limiting Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 407 | DOI:10.1007/978-1-4614-4538-8_6
- Graded Subdifferentials, Ioffe Subdifferentials, Calculus Without Derivatives, Volume 266 (2013), p. 463 | DOI:10.1007/978-1-4614-4538-8_7
Cité par 31 documents. Sources : Crossref