A (rough) pathwise approach to a class of non-linear stochastic partial differential equations
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 1, pp. 27-46.

We consider non-linear parabolic evolution equations of the form t u=F(t,x,Du,D 2 u), subject to noise of the form H(x,Du)dB where H is linear in Du and dB denotes the Stratonovich differential of a multi-dimensional Brownian motion. Motivated by the essentially pathwise results of [P.-L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326 (9) (1998) 1085–1092] we propose the use of rough path analysis [T.J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215–310] in this context. Although the core arguments are entirely deterministic, a continuity theorem allows for various probabilistic applications (limit theorems, support, large deviations, …).

DOI : 10.1016/j.anihpc.2010.11.002
Mots-clés : Parabolic viscosity PDEs, Stochastic PDEs, Rough path theory
@article{AIHPC_2011__28_1_27_0,
     author = {Caruana, Michael and Friz, Peter K. and Oberhauser, Harald},
     title = {A (rough) pathwise approach to a class of non-linear stochastic partial differential equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {27--46},
     publisher = {Elsevier},
     volume = {28},
     number = {1},
     year = {2011},
     doi = {10.1016/j.anihpc.2010.11.002},
     mrnumber = {2765508},
     zbl = {1219.60061},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2010.11.002/}
}
TY  - JOUR
AU  - Caruana, Michael
AU  - Friz, Peter K.
AU  - Oberhauser, Harald
TI  - A (rough) pathwise approach to a class of non-linear stochastic partial differential equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 27
EP  - 46
VL  - 28
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2010.11.002/
DO  - 10.1016/j.anihpc.2010.11.002
LA  - en
ID  - AIHPC_2011__28_1_27_0
ER  - 
%0 Journal Article
%A Caruana, Michael
%A Friz, Peter K.
%A Oberhauser, Harald
%T A (rough) pathwise approach to a class of non-linear stochastic partial differential equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 27-46
%V 28
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2010.11.002/
%R 10.1016/j.anihpc.2010.11.002
%G en
%F AIHPC_2011__28_1_27_0
Caruana, Michael; Friz, Peter K.; Oberhauser, Harald. A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 1, pp. 27-46. doi : 10.1016/j.anihpc.2010.11.002. http://www.numdam.org/articles/10.1016/j.anihpc.2010.11.002/

[1] Guy Barles, Solutions de viscosité des équations de Hamilton–Jacobi, Springer (2004) | MR

[2] Guy Barles, Samuel Biton, Mariane Bourgoing, Olivier Ley, Uniqueness results for quasilinear parabolic equations through viscosity solutions' methods, Calc. Var. Partial Differential Equations 18 no. 2 (2003), 159-179 | MR | Zbl

[3] Guy Barles, Samuel Biton, Olivier Ley, A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal. 162 no. 4 (2002), 287-325 | MR | Zbl

[4] Emmanuel Breuillard, Peter Friz, Martin Huesmann, From random walks to rough paths, Proc. Amer. Math. Soc. 137 (2009), 3487-3496 | MR | Zbl

[5] Zdzisław Brzeźniak, Franco Flandoli, Almost sure approximation of Wong–Zakai type for stochastic partial differential equations, Stochastic Process. Appl. 55 no. 2 (1995), 329-358 | MR | Zbl

[6] Rainer Buckdahn, Jin Ma, Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I, Stochastic Process. Appl. 93 no. 2 (2001), 181-204 | MR | Zbl

[7] Rainer Buckdahn, Jin Ma, Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II, Stochastic Process. Appl. 93 no. 2 (2001), 205-228 | MR | Zbl

[8] Rainer Buckdahn, Jin Ma, Pathwise stochastic Taylor expansions and stochastic viscosity solutions for fully nonlinear stochastic PDEs, Ann. Probab. 30 no. 3 (2002), 1131-1171 | MR | Zbl

[9] Rainer Buckdahn, Jin Ma, Pathwise stochastic control problems and stochastic HJB equations, SIAM J. Control Optim. 45 no. 6 (2007), 2224-2256 | MR | Zbl

[10] Laure Coutin, Peter Friz, Nicolas Victoir, Good rough path sequences and applications to anticipating stochastic calculus, Ann. Probab. 35 no. 3 (2007), 1172-1193 | MR | Zbl

[11] Laure Coutin, Zhongmin Qian, Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields 122 no. 1 (2002), 108-140 | MR | Zbl

[12] Michael G. Crandall, Viscosity Solutions: A Primer, Lecture Notes in Math. vol. 1660 (1995) | MR | Zbl

[13] Michael G. Crandall, Hitoshi Ishii, Pierre-Louis Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 no. 1 (1992), 1-67 | Zbl

[14] Mark H.A. Davis, Gabriel Burstein, A deterministic approach to stochastic optimal control with application to anticipative control, Stoch. Stoch. Rep. 40 no. 3–4 (1992), 203-256 | MR | Zbl

[15] Wendell H. Fleming, H. Mete Soner, Controlled Markov Processes and Viscosity Solutions, Stoch. Model. Appl. Probab. vol. 25, Springer, New York (2006) | MR | Zbl

[16] P. Friz, T. Lyons, D. Stroock, Lévy's area under conditioning, Ann. Inst. H. Poincaré Probab. Statist. 42 no. 1 (2006), 89-101 | EuDML | Numdam | MR | Zbl

[17] Peter Friz, Harald Oberhauser, Rough path limits of the Wong–Zakai type with a modified drift term, J. Funct. Anal. 256 (2009), 3236-3256 | MR | Zbl

[18] Peter Friz, Nicolas Victoir, Differential equations driven by Gaussian signals, Ann. Inst. H. Poincaré Probab. Statist. 46 no. 2 (2010), 369-413 | EuDML | Numdam | MR | Zbl

[19] Peter Friz, Nicolas Victoir, Approximations of the Brownian rough path with applications to stochastic analysis, Ann. Inst. H. Poincaré Probab. Statist. 41 no. 4 (2005), 703-724 | EuDML | Numdam | MR | Zbl

[20] Peter Friz, Nicolas Victoir, On uniformly subelliptic operators and stochastic area, Probab. Theory Related Fields 142 no. 3–4 (2008), 475-523 | MR | Zbl

[21] Peter K. Friz, Nicolas B. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge Stud. Adv. Math. vol. 120, Cambridge University Press, Cambridge (2010) | MR | Zbl

[22] Y. Giga, S. Goto, H. Ishii, M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J. 40 no. 2 (1991), 443-470 | MR | Zbl

[23] I. Gyöngy, The stability of stochastic partial differential equations and applications. I, Stoch. Stoch. Rep. 27 no. 2 (1989), 129-150 | MR | Zbl

[24] I. Gyöngy, The stability of stochastic partial differential equations and applications. Theorems on supports, Stochastic Partial Differential Equations and Applications, II, Trento, 1988, Lecture Notes in Math. vol. 1390, Springer, Berlin (1989), 91-118 | MR | Zbl

[25] I. Gyöngy, The stability of stochastic partial differential equations. II, Stoch. Stoch. Rep. 27 no. 3 (1989), 189-233 | MR | Zbl

[26] I. Gyöngy, The approximation of stochastic partial differential equations and applications in nonlinear filtering, Comput. Math. Appl. 19 no. 1 (1990), 47-63 | MR | Zbl

[27] István Gyöngy, On stochastic partial differential equations. Results on approximations, Topics in Stochastic Systems: Modelling, Estimation and Adaptive Control, Lecture Notes in Control and Inform. Sci. vol. 161, Springer, Berlin (1991), 116-136 | MR | Zbl

[28] István Gyöngy, György Michaletzky, On Wong–Zakai approximations with δ-martingales, Stochastic Analysis with Applications to Mathematical Finance Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 no. 2041 (2004), 309-324 | MR | Zbl

[29] István Gyöngy, Anton Shmatkov, Rate of convergence of Wong–Zakai approximations for stochastic partial differential equations, Appl. Math. Optim. 54 no. 3 (2006), 315-341 | MR | Zbl

[30] Bogdan Iftimie, Constantin Varsan, A pathwise solution for nonlinear parabolic equations with stochastic perturbations, Cent. Eur. J. Math. 1 no. 3 (2003), 367-381 | EuDML | MR | Zbl

[31] M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab. 28 no. 2 (2000), 558-602 | MR | Zbl

[32] Hiroshi Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Stud. Adv. Math. vol. 24, Cambridge University Press, Cambridge (1997) | MR | Zbl

[33] M. Ledoux, Z. Qian, T. Zhang, Large deviations and support theorem for diffusion processes via rough paths, Stochastic Process. Appl. 102 no. 2 (2002), 265-283 | MR | Zbl

[34] P.-L. Lions, P.E. Souganidis, Viscosity solutions of fully nonlinear stochastic partial differential equations, Viscosity Solutions of Differential Equations and Related Topics Kyoto, 2001 Sūrikaisekikenkyūsho Kōkyūroku 1287 (2002), 58-65 | MR

[35] Pierre-Louis Lions, Panagiotis E. Souganidis, Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326 no. 9 (1998), 1085-1092 | MR | Zbl

[36] Pierre-Louis Lions, Panagiotis E. Souganidis, Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math. 327 no. 8 (1998), 735-741 | MR | Zbl

[37] Pierre-Louis Lions, Panagiotis E. Souganidis, Fully nonlinear stochastic PDE with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math. 331 no. 8 (2000), 617-624 | MR | Zbl

[38] Pierre-Louis Lions, Panagiotis E. Souganidis, Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 331 no. 10 (2000), 783-790 | MR | Zbl

[39] Terry Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 no. 2 (1998), 215-310 | EuDML | MR | Zbl

[40] Terry Lyons, Zhongmin Qian, Flow of diffeomorphisms induced by a geometric multiplicative functional, Probab. Theory Related Fields 112 no. 1 (1998), 91-119 | MR | Zbl

[41] Terry Lyons, Zhongmin Qian, System Control and Rough Paths, Oxford Math. Monogr., Oxford University Press (2002) | MR | Zbl

[42] Terry J. Lyons, Michael Caruana, Thierry Lévy, Differential equations driven by rough paths, Lectures from the 34th Summer School on Probability Theory Held in Saint-Flour, July 6–24, 2004, With an Introduction Concerning the Summer School by Jean Picard, Lecture Notes in Math. vol. 1908, Springer, Berlin (2007) | MR | Zbl

[43] David Nualart, The Malliavin Calculus and Related Topics, Probab. Appl. (N. Y.), Springer-Verlag, Berlin (2006) | MR | Zbl

[44] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics 3 no. 2 (1979), 127-167 | MR | Zbl

[45] Étienne Pardoux, Shi Ge. Peng, Backward doubly stochastic differential equations and systems of quasilinear SPDEs, Probab. Theory Related Fields 98 no. 2 (1994), 209-227 | MR | Zbl

[46] B.L. Rozovskiĭ, Evolyutsionnye stokhasticheskie sistemy, Lineinaya teoriya i prilozkheniya k statistike sluchainykh protsessov, Nauka, Moscow (1983)

[47] Luciano Tubaro, Some results on stochastic partial differential equations by the stochastic characteristics method, Stoch. Anal. Appl. 6 no. 2 (1988), 217-230 | MR | Zbl

[48] Krystyna Twardowska, An approximation theorem of Wong–Zakai type for nonlinear stochastic partial differential equations, Stoch. Anal. Appl. 13 no. 5 (1995), 601-626 | MR | Zbl

Cité par Sources :