We consider the equation in a bounded domain with edges. We impose Neumann boundary conditions, assuming , and prove concentration of solutions at suitable points of ∂Ω on the edges.
@article{AIHPC_2011__28_1_107_0, author = {Dipierro, Serena}, title = {Concentration of solutions for a singularly perturbed {Neumann} problem in non-smooth domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {107--126}, publisher = {Elsevier}, volume = {28}, number = {1}, year = {2011}, doi = {10.1016/j.anihpc.2010.11.003}, mrnumber = {2765513}, zbl = {1209.35040}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2010.11.003/} }
TY - JOUR AU - Dipierro, Serena TI - Concentration of solutions for a singularly perturbed Neumann problem in non-smooth domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 107 EP - 126 VL - 28 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2010.11.003/ DO - 10.1016/j.anihpc.2010.11.003 LA - en ID - AIHPC_2011__28_1_107_0 ER -
%0 Journal Article %A Dipierro, Serena %T Concentration of solutions for a singularly perturbed Neumann problem in non-smooth domains %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 107-126 %V 28 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2010.11.003/ %R 10.1016/j.anihpc.2010.11.003 %G en %F AIHPC_2011__28_1_107_0
Dipierro, Serena. Concentration of solutions for a singularly perturbed Neumann problem in non-smooth domains. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 1, pp. 107-126. doi : 10.1016/j.anihpc.2010.11.003. http://www.numdam.org/articles/10.1016/j.anihpc.2010.11.003/
[1] Sobolev Spaces, Academic Press, New York (1975) | MR | Zbl
,[2] Perturbation Methods and Semilinear Elliptic Problems on , Progr. Math. vol. 240, Birkhäuser (2005) | MR
, ,[3] Nonlinear scalar field equations (part I and part II), Arch. Ration. Mech. Anal. 82 (1983), 313-376 | MR
, ,[4] Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations 27 no. 2 (1978), 266-273 | Zbl
, ,[5] Eigenvalues in Riemannian Geometry, Academic Press, New York (1984) | MR
,[6] On the effect of domain topology in a singular perturbation problem, Topol. Methods Nonlinear Anal. 11 no. 2 (1998), 227-248 | MR | Zbl
, ,[7] Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 no. 2 (1999), 241-262 | MR | Zbl
, ,[8] On the role of the mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999), 63-79 | MR | Zbl
, , ,[9] Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397-408 | MR | Zbl
, ,[10] Concentration of solutions for some singularly perturbed mixed problems. Part I: existence results, Arch. Ration. Mech. Anal. 196 no. 3 (2010), 907-950 | MR | Zbl
, , , ,[11] Concentration of solutions for some singularly perturbed mixed problems. Part II: asymptotic of minimal energy solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 37-56 | Numdam | MR | Zbl
, , , ,[12] A theory of biological pattern formation, Kybernetik (Berlin) 12 (1972), 30-39
, ,[13] Elliptic Problems in Nonsmooth Domains, Pitman, London (1985) | MR | Zbl
,[14] Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia Math. Appl. vol. 61, Cambridge University Press, Cambridge (1996) | MR | Zbl
,[15] Some results on a class of nonlinear Schrödinger equations, Math. Z. 235 no. 4 (2000), 687-705 | MR | Zbl
,[16] Existence of multipeak solutions for a semilinear Neumann problem via non-smooth critical point theory, Calc. Var. Partial Differential Equations 11 no. 2 (2000), 143-175 | MR | Zbl
, , ,[17] Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84 no. 3 (1996), 739-769 | MR | Zbl
,[18] Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 no. 1 (1999), 1-27 | MR | Zbl
, ,[19] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 no. 3 (2000), 522-538 | MR | Zbl
, ,[20] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 no. 1 (2000), 47-82 | EuDML | Numdam | MR | Zbl
, , ,[21] The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Pub. Co. (1955) | MR | Zbl
,[22] Uniqueness of positive solutions of in , Arch. Ration. Mech. Anal. 105 (1989), 243-266 | MR | Zbl
,[23] On a singularly perturbed equation with Neumann boundary conditions, Comm. Partial Differential Equations 23 no. 3–4 (1998), 487-545 | MR | Zbl
,[24] The Dirichlet problem for singularly perturbed elliptic equation, Comm. Pure Appl. Math. 51 (1998), 1445-1490 | MR | Zbl
, ,[25] Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations 72 (1988), 1-27 | MR | Zbl
, , ,[26] Concentration of solutions for some singularly perturbed Neumann problems, Geometric Analysis and PDEs, Lecture Notes in Math. vol. 1977, Springer, Dordrecht (2009), 63-115 | MR | Zbl
,[27] Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci. 15 (1979), 401-454 | MR | Zbl
,[28] Analysis of Spherical Symmetries in Euclidean Spaces, Appl. Math. Sci. vol. 129, Springer-Verlag, New York (1998) | MR | Zbl
,[29] Spherical Harmonics, Lecture Notes in Math. vol. 17, Springer-Verlag, Berlin/Heidelberg/New York (1966) | MR | Zbl
,[30] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 no. 1 (1998), 9-18 | MR | Zbl
,[31] Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 no. 1 (1992), 1-20 | Zbl
, , ,[32] On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991), 819-851 | MR | Zbl
, ,[33] Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281 | MR | Zbl
, ,[34] Stability of least energy patterns of the shadow system for an activator-inhibitor model. Recent topics in mathematics moving toward science and engineering, Japan J. Indust. Appl. Math. 18 no. 2 (2001), 259-272 | Zbl
, , ,[35] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 no. 7 (1995), 731-768 | MR | Zbl
, ,[36] Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc. 354 (2002), 3117-3154 | MR | Zbl
,[37] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162 | MR | Zbl
,[38] The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 237 (1952), 37-72 | MR
,[39] On the existence of multiple, single-peaked solutions for a semilinear Neumann problem, Arch. Ration. Mech. Anal. 120 no. 4 (1992), 375-399 | MR | Zbl
,[40] On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations 134 no. 1 (1997), 104-133 | MR | Zbl
,[41] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 no. 2 (1996), 315-333 | MR | Zbl
,Cité par Sources :