We study the existence of radially symmetric solitary waves for a system of a nonlinear Klein–Gordon equation coupled with Maxwell's equation in presence of a positive mass. The nonlinear potential appearing in the system is assumed to be positive and with more than quadratical growth at infinity.
Mots-clés : Klein–Gordon–Maxwell system, Positive superquadratic potential, Lagrange multiplier, Nontrivial solutions
@article{AIHPC_2010__27_4_1055_0, author = {Mugnai, Dimitri}, title = {Solitary waves in {Abelian} {Gauge} {Theories} with strongly nonlinear potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1055--1071}, publisher = {Elsevier}, volume = {27}, number = {4}, year = {2010}, doi = {10.1016/j.anihpc.2010.02.001}, mrnumber = {2659157}, zbl = {1194.35378}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2010.02.001/} }
TY - JOUR AU - Mugnai, Dimitri TI - Solitary waves in Abelian Gauge Theories with strongly nonlinear potentials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 1055 EP - 1071 VL - 27 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2010.02.001/ DO - 10.1016/j.anihpc.2010.02.001 LA - en ID - AIHPC_2010__27_4_1055_0 ER -
%0 Journal Article %A Mugnai, Dimitri %T Solitary waves in Abelian Gauge Theories with strongly nonlinear potentials %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 1055-1071 %V 27 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2010.02.001/ %R 10.1016/j.anihpc.2010.02.001 %G en %F AIHPC_2010__27_4_1055_0
Mugnai, Dimitri. Solitary waves in Abelian Gauge Theories with strongly nonlinear potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 4, pp. 1055-1071. doi : 10.1016/j.anihpc.2010.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2010.02.001/
[1] Existence of hylomorphic solitary waves in Klein–Gordon and in Klein–Gordon–Maxwell equations, Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Natur. Rend Lincei (9) Mat. Appl. 20 (2009), 243-279 | MR | Zbl
, ,[2] Solitary waves in Abelian gauge theories, Adv. Nonlinear Stud. 8 no. 2 (2008), 327-352 | MR | Zbl
, ,[3] Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 (2002), 409-420 | MR | Zbl
, ,[4] Towards a unified field theory for classical electrodynamics, Arch. Ration. Mech. Anal. 173 (2004), 379-414 | MR | Zbl
, ,[5] Three-dimensional vortices in abelian gauge theories, Nonlinear Anal. 70 (2009), 4402-4421 | MR | Zbl
, ,[6] Nonlinear scalar field equations. I Existence of a ground state, Arch. Ration. Mech. Anal. 82 no. 4 (1983), 313-345 | MR | Zbl
, ,[7] Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 no. 4 (1982), 549-561 | MR | Zbl
, ,[8] Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud. 4 no. 3 (2004), 307-322 | MR | Zbl
, ,[9] Solitary Waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 1-14 | MR | Zbl
, ,[10] Nonlinear Klein–Gordon equations coupled with Born–Infeld type equations, Electron. J. Differential Equations 26 (2002), 1-13 | EuDML | MR | Zbl
, ,[11] Solitons and Nonlinear Wave Equations, Academic Press, London, New York (1982) | MR | Zbl
, , , ,[12] Stationary waves of the Maxwell–Dirac and the Klein–Gordon–Dirac equations, Calc. Var. Partial Differential Equations 4 (1996), 265-281 | MR | Zbl
, , ,[13] Geometry, Particles and Fields, Odense University Press (1981) | MR | Zbl
,[14] On the Maxwell–Klein–Gordon equation with finite energy, Duke Math. J. 74 no. 1 (1994), 19-44 | MR | Zbl
, ,[15] The concentration–compactness principle in the calculus of variations. The locally compact case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 no. 2 (1984), 109-145 | EuDML | Numdam | Zbl
,[16] The concentration–compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 no. 4 (1984), 223-283 | EuDML | Numdam | MR | Zbl
,[17] Existence and stability of solitary waves in non-linear Klein–Gordon–Maxwell equations, Rev. Math. Phys. 18 (2006), 747-779 | MR | Zbl
,[18] Almost optimal local well-posedness for the -dimensional Maxwell–Klein–Gordon equations, J. Amer. Math. Soc. 17 no. 2 (2004), 297-359 | MR | Zbl
, ,[19] Coupled Klein–Gordon and Born–Infeld type equations: looking for solitons, Proc. R. Soc. Lond. Ser. A 460 (2004), 1519-1528 | MR | Zbl
,[20] Solitons and Instantons, North-Holland, Amsterdam, Oxford, New York, Tokyo (1988) | MR | Zbl
,[21] Global regularity for the Maxwell–Klein–Gordon equation with small critical Sobolev norm in high dimensions, Comm. Math. Phys. 251 no. 2 (2004), 377-426 | MR | Zbl
, ,[22] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 no. 2 (1977), 149-162 | Zbl
,[23] On the Yang–Mills–Higgs equations, Bull. Amer. Math. Soc. (N.S.) 10 no. 2 (1984), 295-297 | MR | Zbl
,[24] Minimax Theorems, Progr. Nonlinear Differential Equations Appl. vol. 24, Birkhäuser Boston, Inc., Boston, MA (1996) | MR | Zbl
,Cité par Sources :