Nous considérons la diffusion non linéaire d'une substance dans un récipient (pas nécessairement borné) avec frontière bornée de classe
We consider nonlinear diffusion of some substance in a container (not necessarily bounded) with bounded boundary of class
Mots-clés : Nonlinear diffusion equation, Overdetermined problems, Stationary level surfaces
@article{AIHPC_2010__27_3_937_0, author = {Magnanini, Rolando and Sakaguchi, Shigeru}, title = {Nonlinear diffusion with a bounded stationary level surface}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {937--952}, publisher = {Elsevier}, volume = {27}, number = {3}, year = {2010}, doi = {10.1016/j.anihpc.2009.12.001}, mrnumber = {2629887}, zbl = {1194.35209}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.12.001/} }
TY - JOUR AU - Magnanini, Rolando AU - Sakaguchi, Shigeru TI - Nonlinear diffusion with a bounded stationary level surface JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 937 EP - 952 VL - 27 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.12.001/ DO - 10.1016/j.anihpc.2009.12.001 LA - en ID - AIHPC_2010__27_3_937_0 ER -
%0 Journal Article %A Magnanini, Rolando %A Sakaguchi, Shigeru %T Nonlinear diffusion with a bounded stationary level surface %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 937-952 %V 27 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.12.001/ %R 10.1016/j.anihpc.2009.12.001 %G en %F AIHPC_2010__27_3_937_0
Magnanini, Rolando; Sakaguchi, Shigeru. Nonlinear diffusion with a bounded stationary level surface. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 937-952. doi : 10.1016/j.anihpc.2009.12.001. https://www.numdam.org/articles/10.1016/j.anihpc.2009.12.001/
[1] Uniqueness theorems for surfaces in the large V, Vestnik Leningrad Univ. 13 no. 19 (1958), 5-8, Amer. Math. Soc. Transl. Ser. 2 21 (1962), 412-415 | Zbl
,[2] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67 | Zbl
, , ,[3] A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré 2 (1985), 1-20 | EuDML | Numdam | MR | Zbl
, ,[4] A PDE approach to certain large deviation problems for systems of parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire S6 (1989), 229-258 | EuDML | Numdam | Zbl
, ,[5] Random Perturbations of Dynamical Systems, Springer-Verlag, New York (1984) | MR | Zbl
, ,[6] Hölder continuity of solutions of parabolic equations, J. London Math. Soc. 13 (1976), 103-106 | MR | Zbl
,[7] An asymptotic formula for solutions of Hamilton–Jacobi–Bellman equations, Nonlinear Anal. 11 (1987), 429-436 | MR | Zbl
,[8] Serrin's result for hyperbolic space and sphere, Duke Math. J. 91 (1998), 17-28 | MR | Zbl
, ,[9] The relation between the porous medium and the eikonal equations in several space dimensions, Rev. Mat. Iberoamericana 3 (1987), 275-310 | EuDML | MR | Zbl
, , ,[10] The spatial critical points not moving along the heat flow, J. Anal. Math. 71 (1997), 237-261 | MR | Zbl
, ,[11] The spatial critical points not moving along the heat flow II: The centrosymmetric case, Math. Z. 230 (1999), 695-712, Math. Z. 232 (1999), 389 | MR | Zbl
, ,[12] Matzoh ball soup: Heat conductors with a stationary isothermic surface, Ann. of Math. 156 (2002), 931-946 | MR | Zbl
, ,[13] Interaction between degenerate diffusion and shape of domain, Proc. Royal Soc. Edinburgh Sect. A 137 (2007), 373-388 | MR | Zbl
, ,[14] Stationary isothermic surfaces for unbounded domains, Indiana Univ. Math. J. 56 (2007), 2723-2738 | MR | Zbl
, ,[15] Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds, Acta Math. 179 (1997), 79-103 | MR | Zbl
,[16] Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Rational Mech. Anal. 137 (1997), 381-394 | MR | Zbl
,[17] Mean curvature, the Laplacian, and soap bubbles, Amer. Math. Monthly 89 (1982), 180-188 | MR | Zbl
,[18] A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318 | MR | Zbl
,[19] Symmetry for exterior elliptic problems and two conjectures in potential theory, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 135-156 | EuDML | Numdam | MR | Zbl
,[20] The Hopf–Lax formula gives the unique viscosity solution, Differential Integral Equations 15 (2002), 47-52 | MR | Zbl
,[21] On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math. 20 (1967), 431-455 | MR | Zbl
,- Quantitative stability for overdetermined nonlocal problems with parallel surfaces and investigation of the stability exponents, Journal de Mathématiques Pures et Appliquées, Volume 188 (2024), p. 273 | DOI:10.1016/j.matpur.2024.06.011
- The role of antisymmetric functions in nonlocal equations, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/8984
- Symmetry and quantitative stability for the parallel surface fractional torsion problem, Transactions of the American Mathematical Society, Volume 376 (2023) no. 5, p. 3515 | DOI:10.1090/tran/8837
- Small diffusion and short-time asymptotics for Pucci operators, Applicable Analysis, Volume 101 (2022) no. 10, p. 3716 | DOI:10.1080/00036811.2020.1750602
- Short-Time Asymptotics for Game-Theoretic p-Laplacian and Pucci Operators, Current Trends in Analysis, its Applications and Computation (2022), p. 413 | DOI:10.1007/978-3-030-87502-2_42
- Remarks on the convexity of free boundaries (Scalar and system cases), St. Petersburg Mathematical Journal, Volume 32 (2021) no. 4, p. 713 | DOI:10.1090/spmj/1666
- Asymptotics for the resolvent equation associated to the game-theoreticp-laplacian, Applicable Analysis, Volume 98 (2019) no. 10, p. 1827 | DOI:10.1080/00036811.2018.1466283
- Short-time behavior for game-theoretic p-caloric functions, Journal de Mathématiques Pures et Appliquées, Volume 126 (2019), p. 249 | DOI:10.1016/j.matpur.2018.06.020
- Optimal Concavity of the Torsion Function, Journal of Optimization Theory and Applications, Volume 178 (2018) no. 1, p. 26 | DOI:10.1007/s10957-018-1302-9
- Hölder stability for Serrin’s overdetermined problem, Annali di Matematica Pura ed Applicata (1923 -), Volume 195 (2016) no. 4, p. 1333 | DOI:10.1007/s10231-015-0518-7
- Symmetry Problems on Stationary Isothermic Surfaces in Euclidean Spaces, Geometric Properties for Parabolic and Elliptic PDE's, Volume 176 (2016), p. 231 | DOI:10.1007/978-3-319-41538-3_13
- Solutions of elliptic equations with a level surface parallel to the boundary: Stability of the radial configuration, Journal d'Analyse Mathématique, Volume 128 (2016) no. 1, p. 337 | DOI:10.1007/s11854-016-0011-2
- The Matzoh Ball Soup Problem: A complete characterization, Nonlinear Analysis, Volume 131 (2016), p. 170 | DOI:10.1016/j.na.2015.06.022
- When does the heat equation have a solution with a sequence of similar level sets?, Annali di Matematica Pura ed Applicata (1923 -), Volume 194 (2015) no. 6, p. 1595 | DOI:10.1007/s10231-014-0435-1
- Characterization of ellipses as uniformly dense sets with respect to a family of convex bodies, Annali di Matematica Pura ed Applicata (1923 -), Volume 193 (2014) no. 5, p. 1383 | DOI:10.1007/s10231-013-0334-x
- Stationary Level Surfaces and Liouville-Type Theorems Characterizing Hyperplanes, Geometric Properties for Parabolic and Elliptic PDE's, Volume 2 (2013), p. 269 | DOI:10.1007/978-88-470-2841-8_17
- Matzoh ball soup revisited: the boundary regularity issue, Mathematical Methods in the Applied Sciences, Volume 36 (2013) no. 15, p. 2023 | DOI:10.1002/mma.1551
- Interaction between nonlinear diffusion and geometry of domain, Journal of Differential Equations, Volume 252 (2012) no. 1, p. 236 | DOI:10.1016/j.jde.2011.08.017
Cité par 18 documents. Sources : Crossref