Nonlinear diffusion with a bounded stationary level surface
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 937-952.

Nous considérons la diffusion non linéaire d'une substance dans un récipient (pas nécessairement borné) avec frontière bornée de classe C2. Supposons qu'initialement, le récipient soit vide et, à sa frontière, la densité de la substance soit gardée à tout moment égale à 1. Nous montrons que, si le récipient contient un sous-domaine C2 propre à la frontière duquel la substance est gardée à tout moment à densité constante, alors la frontière du récipient doit être une sphère. Nous considérons aussi la diffusion non linéaire dans tout N d'une substance dont la densité est initialement une fonction caractéristique du complémentaire d'un domaine ayant la frontière bornée et C2, et nous obtenons des résultats semblables. Ces résultats sont aussi généralisés au cas du flux de chaleur dans la sphère 𝕊N et l'espace hyperbolique N.

We consider nonlinear diffusion of some substance in a container (not necessarily bounded) with bounded boundary of class C2. Suppose that, initially, the container is empty and, at all times, the substance at its boundary is kept at density 1. We show that, if the container contains a proper C2-subdomain on whose boundary the substance has constant density at each given time, then the boundary of the container must be a sphere. We also consider nonlinear diffusion in the whole N of some substance whose density is initially a characteristic function of the complement of a domain with bounded C2 boundary, and obtain similar results. These results are also extended to the heat flow in the sphere 𝕊N and the hyperbolic space N.

DOI : 10.1016/j.anihpc.2009.12.001
Classification : 35K60, 35B40, 35B25
Mots-clés : Nonlinear diffusion equation, Overdetermined problems, Stationary level surfaces
@article{AIHPC_2010__27_3_937_0,
     author = {Magnanini, Rolando and Sakaguchi, Shigeru},
     title = {Nonlinear diffusion with a bounded stationary level surface},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {937--952},
     publisher = {Elsevier},
     volume = {27},
     number = {3},
     year = {2010},
     doi = {10.1016/j.anihpc.2009.12.001},
     mrnumber = {2629887},
     zbl = {1194.35209},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.12.001/}
}
TY  - JOUR
AU  - Magnanini, Rolando
AU  - Sakaguchi, Shigeru
TI  - Nonlinear diffusion with a bounded stationary level surface
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 937
EP  - 952
VL  - 27
IS  - 3
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2009.12.001/
DO  - 10.1016/j.anihpc.2009.12.001
LA  - en
ID  - AIHPC_2010__27_3_937_0
ER  - 
%0 Journal Article
%A Magnanini, Rolando
%A Sakaguchi, Shigeru
%T Nonlinear diffusion with a bounded stationary level surface
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 937-952
%V 27
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2009.12.001/
%R 10.1016/j.anihpc.2009.12.001
%G en
%F AIHPC_2010__27_3_937_0
Magnanini, Rolando; Sakaguchi, Shigeru. Nonlinear diffusion with a bounded stationary level surface. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 937-952. doi : 10.1016/j.anihpc.2009.12.001. https://www.numdam.org/articles/10.1016/j.anihpc.2009.12.001/

[1] A.D. Aleksandrov, Uniqueness theorems for surfaces in the large V, Vestnik Leningrad Univ. 13 no. 19 (1958), 5-8, Amer. Math. Soc. Transl. Ser. 2 21 (1962), 412-415 | Zbl

[2] M.G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67 | Zbl

[3] L.C. Evans, H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré 2 (1985), 1-20 | EuDML | Numdam | MR | Zbl

[4] L.C. Evans, P.E. Souganidis, A PDE approach to certain large deviation problems for systems of parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire S6 (1989), 229-258 | EuDML | Numdam | Zbl

[5] M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York (1984) | MR | Zbl

[6] B.H. Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc. 13 (1976), 103-106 | MR | Zbl

[7] S. Koike, An asymptotic formula for solutions of Hamilton–Jacobi–Bellman equations, Nonlinear Anal. 11 (1987), 429-436 | MR | Zbl

[8] S. Kumaresan, J. Prajapat, Serrin's result for hyperbolic space and sphere, Duke Math. J. 91 (1998), 17-28 | MR | Zbl

[9] P.L. Lions, P.E. Souganidis, J.L. Vázquez, The relation between the porous medium and the eikonal equations in several space dimensions, Rev. Mat. Iberoamericana 3 (1987), 275-310 | EuDML | MR | Zbl

[10] R. Magnanini, S. Sakaguchi, The spatial critical points not moving along the heat flow, J. Anal. Math. 71 (1997), 237-261 | MR | Zbl

[11] R. Magnanini, S. Sakaguchi, The spatial critical points not moving along the heat flow II: The centrosymmetric case, Math. Z. 230 (1999), 695-712, Math. Z. 232 (1999), 389 | MR | Zbl

[12] R. Magnanini, S. Sakaguchi, Matzoh ball soup: Heat conductors with a stationary isothermic surface, Ann. of Math. 156 (2002), 931-946 | MR | Zbl

[13] R. Magnanini, S. Sakaguchi, Interaction between degenerate diffusion and shape of domain, Proc. Royal Soc. Edinburgh Sect. A 137 (2007), 373-388 | MR | Zbl

[14] R. Magnanini, S. Sakaguchi, Stationary isothermic surfaces for unbounded domains, Indiana Univ. Math. J. 56 (2007), 2723-2738 | MR | Zbl

[15] J.R. Norris, Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds, Acta Math. 179 (1997), 79-103 | MR | Zbl

[16] W. Reichel, Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Rational Mech. Anal. 137 (1997), 381-394 | MR | Zbl

[17] R.C. Reilly, Mean curvature, the Laplacian, and soap bubbles, Amer. Math. Monthly 89 (1982), 180-188 | MR | Zbl

[18] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318 | MR | Zbl

[19] B. Sirakov, Symmetry for exterior elliptic problems and two conjectures in potential theory, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 135-156 | EuDML | Numdam | MR | Zbl

[20] T. Strömberg, The Hopf–Lax formula gives the unique viscosity solution, Differential Integral Equations 15 (2002), 47-52 | MR | Zbl

[21] S.R.S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math. 20 (1967), 431-455 | MR | Zbl

  • Dipierro, Serena; Poggesi, Giorgio; Thompson, Jack; Valdinoci, Enrico Quantitative stability for overdetermined nonlocal problems with parallel surfaces and investigation of the stability exponents, Journal de Mathématiques Pures et Appliquées, Volume 188 (2024), p. 273 | DOI:10.1016/j.matpur.2024.06.011
  • Dipierro, Serena; Poggesi, Giorgio; Thompson, Jack; Valdinoci, Enrico The role of antisymmetric functions in nonlocal equations, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/8984
  • Ciraolo, Giulio; Dipierro, Serena; Poggesi, Giorgio; Pollastro, Luigi; Valdinoci, Enrico Symmetry and quantitative stability for the parallel surface fractional torsion problem, Transactions of the American Mathematical Society, Volume 376 (2023) no. 5, p. 3515 | DOI:10.1090/tran/8837
  • Berti, Diego; Magnanini, Rolando Small diffusion and short-time asymptotics for Pucci operators, Applicable Analysis, Volume 101 (2022) no. 10, p. 3716 | DOI:10.1080/00036811.2020.1750602
  • Berti, Diego Short-Time Asymptotics for Game-Theoretic p-Laplacian and Pucci Operators, Current Trends in Analysis, its Applications and Computation (2022), p. 413 | DOI:10.1007/978-3-030-87502-2_42
  • El Hajj, L.; Shahgholian, H. Remarks on the convexity of free boundaries (Scalar and system cases), St. Petersburg Mathematical Journal, Volume 32 (2021) no. 4, p. 713 | DOI:10.1090/spmj/1666
  • Berti, Diego; Magnanini, Rolando Asymptotics for the resolvent equation associated to the game-theoreticp-laplacian, Applicable Analysis, Volume 98 (2019) no. 10, p. 1827 | DOI:10.1080/00036811.2018.1466283
  • Berti, D.; Magnanini, R. Short-time behavior for game-theoretic p-caloric functions, Journal de Mathématiques Pures et Appliquées, Volume 126 (2019), p. 249 | DOI:10.1016/j.matpur.2018.06.020
  • Henrot, Antoine; Nitsch, Carlo; Salani, Paolo; Trombetti, Cristina Optimal Concavity of the Torsion Function, Journal of Optimization Theory and Applications, Volume 178 (2018) no. 1, p. 26 | DOI:10.1007/s10957-018-1302-9
  • Ciraolo, Giulio; Magnanini, Rolando; Vespri, Vincenzo Hölder stability for Serrin’s overdetermined problem, Annali di Matematica Pura ed Applicata (1923 -), Volume 195 (2016) no. 4, p. 1333 | DOI:10.1007/s10231-015-0518-7
  • Sakaguchi, Shigeru Symmetry Problems on Stationary Isothermic Surfaces in Euclidean Spaces, Geometric Properties for Parabolic and Elliptic PDE's, Volume 176 (2016), p. 231 | DOI:10.1007/978-3-319-41538-3_13
  • Ciraolo, Giulio; Magnanini, Rolando; Sakaguchi, Shigeru Solutions of elliptic equations with a level surface parallel to the boundary: Stability of the radial configuration, Journal d'Analyse Mathématique, Volume 128 (2016) no. 1, p. 337 | DOI:10.1007/s11854-016-0011-2
  • Magnanini, Rolando; Marini, Michele The Matzoh Ball Soup Problem: A complete characterization, Nonlinear Analysis, Volume 131 (2016), p. 170 | DOI:10.1016/j.na.2015.06.022
  • Kawakami, Tatsuki; Sakaguchi, Shigeru When does the heat equation have a solution with a sequence of similar level sets?, Annali di Matematica Pura ed Applicata (1923 -), Volume 194 (2015) no. 6, p. 1595 | DOI:10.1007/s10231-014-0435-1
  • Magnanini, Rolando; Marini, Michele Characterization of ellipses as uniformly dense sets with respect to a family of convex bodies, Annali di Matematica Pura ed Applicata (1923 -), Volume 193 (2014) no. 5, p. 1383 | DOI:10.1007/s10231-013-0334-x
  • Sakaguchi, Shigeru Stationary Level Surfaces and Liouville-Type Theorems Characterizing Hyperplanes, Geometric Properties for Parabolic and Elliptic PDE's, Volume 2 (2013), p. 269 | DOI:10.1007/978-88-470-2841-8_17
  • Magnanini, Rolando; Sakaguchi, Shigeru Matzoh ball soup revisited: the boundary regularity issue, Mathematical Methods in the Applied Sciences, Volume 36 (2013) no. 15, p. 2023 | DOI:10.1002/mma.1551
  • Magnanini, Rolando; Sakaguchi, Shigeru Interaction between nonlinear diffusion and geometry of domain, Journal of Differential Equations, Volume 252 (2012) no. 1, p. 236 | DOI:10.1016/j.jde.2011.08.017

Cité par 18 documents. Sources : Crossref