On démontre que l'indice d'un rayon de lumière dans un espace-temps stationnaire conformément standard est égal à l'indice de sa projection spatiale vue comme une géodésique d'une métrique de Finsler F sur associée à . De plus, on obtient les relations de Morse de géodésiques isotropes reliant un point p à une courbe en utilisant la théorie de Morse sur la variété de Finsler . À cette fin, on démontre un lemme de séparation de la fonctionnelle de l'énergie d'une métrique de Finsler. Enfin, on montre que la réduction à la théorie de Morse d'une variété de Finsler peut être faite aussi pour les géodésiques temporelles.
We show that the index of a lightlike geodesic in a conformally standard stationary spacetime is equal to the index of its spatial projection as a geodesic of a Finsler metric F on associated to . Moreover we obtain the Morse relations of lightlike geodesics connecting a point p to a curve by using Morse theory on the Finsler manifold . To this end, we prove a splitting lemma for the energy functional of a Finsler metric. Finally, we show that the reduction to Morse theory of a Finsler manifold can be done also for timelike geodesics.
Mots-clés : Stationary Lorentzian manifolds, Light rays, Morse theory, Conjugate points, Finsler metrics
@article{AIHPC_2010__27_3_857_0, author = {Caponio, Erasmo and Javaloyes, Miguel \'Angel and Masiello, Antonio}, title = {Morse theory of causal geodesics in a stationary spacetime via {Morse} theory of geodesics of a {Finsler} metric}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {857--876}, publisher = {Elsevier}, volume = {27}, number = {3}, year = {2010}, doi = {10.1016/j.anihpc.2010.01.001}, mrnumber = {2629883}, zbl = {1196.58005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2010.01.001/} }
TY - JOUR AU - Caponio, Erasmo AU - Javaloyes, Miguel Ángel AU - Masiello, Antonio TI - Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 857 EP - 876 VL - 27 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2010.01.001/ DO - 10.1016/j.anihpc.2010.01.001 LA - en ID - AIHPC_2010__27_3_857_0 ER -
%0 Journal Article %A Caponio, Erasmo %A Javaloyes, Miguel Ángel %A Masiello, Antonio %T Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 857-876 %V 27 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2010.01.001/ %R 10.1016/j.anihpc.2010.01.001 %G en %F AIHPC_2010__27_3_857_0
Caponio, Erasmo; Javaloyes, Miguel Ángel; Masiello, Antonio. Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 857-876. doi : 10.1016/j.anihpc.2010.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2010.01.001/
[1] High action orbits for Tonelli Lagrangians and superlinear Hamiltonians on compact configuration spaces, J. Differential Equations 234 (2007), 626-653 | MR | Zbl
, ,[2] A Morse complex for Lorentzian geodesics, Asian J. Math. 12 (2008), 299-320 | MR | Zbl
, ,[3] A smooth pseudo-gradient for the Lagrangian action functional, Adv. Nonlinear Stud. 9 (2009), 597-623 | MR | Zbl
, ,[4] The existence of two closed geodesics on every Finsler 2-sphere, arXiv:0709.1243v2 [math.SG] (2007) | MR
, ,[5] An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics, Springer-Verlag, New York (2000) | MR | Zbl
, , ,[6] A Morse index for geodesics in static Lorentz manifolds, Math. Ann. 293 (1992), 433-442 | EuDML | MR | Zbl
, ,[7] Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York (1996) | MR | Zbl
, , ,[8] On the energy functional on Finsler manifolds and applications to stationary spacetimes, arXiv:math/0702323v3 [math.DG] (2007) | MR
, , ,[9] On the interplay between Lorentzian causality and Finsler metrics of Randers type, arXiv:0903.3501v1 [math.DG] (2009) | MR | Zbl
, , ,[10] Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag (2005) | MR
,[11] A variant mountain pass lemma, Sci. Sinica Ser. A 26 (1983), 1241-1255 | MR | Zbl
,[12] versus isolated critical points, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 441-446 | MR | Zbl
,[13] A Morse lemma for degenerate critical points with low differentiability, Abstr. Appl. Anal. 5 (2000), 159-188 | EuDML | MR | Zbl
, ,[14] A Fermat principle for stationary space-times and applications to light rays, J. Geom. Phys. 15 (1995), 159-188 | MR | Zbl
, , ,[15] Gravitational lenses: Odd or even images?, Classical Quantum Gravity 16 (1999), 1689-1694 | MR | Zbl
, ,[16] A Morse theory for light rays on stably causal Lorentzian manifolds, Ann. Inst. Henri Poincaré, Phys. Theor. 69 (1998), 359-412 | EuDML | Numdam | MR | Zbl
, , ,[17] The Fermat principle in General Relativity and applications, J. Math. Phys. 43 (2002), 563-596 | MR | Zbl
, , ,[18] Stationary metrics and optical Zermelo–Randers–Finsler geometry, Phys. Rev. D 79 (2009), 044022 | MR
, , , ,[19] Periodic geodesics on compact riemannian manifolds, J. Differential Geometry 3 (1969), 493-510 | MR | Zbl
, ,[20] On differentiable functions with isolated critical points, Topology 8 (1969), 361-369 | MR | Zbl
, ,[21] A Morse-theoretical analysis of gravitational lensing by a Kerr–Newman black hole, J. Math. Phys. 47 (2006), 042503 | MR | Zbl
, ,[22] Splitting theorem, Poincaré–Hopf theorem and jumping nonlinear problems, J. Funct. Anal. 221 (2005), 439-455 | MR | Zbl
, , ,[23] Riemannian Geometry, de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin (1982) | MR | Zbl
,[24] Fermat principles for arbitrary space-times, Astrophys. J. 351 (1990), 114-120
,[25] Variational Methods in Lorentzian Geometry, Pitman Research Notes in Mathematics Series vol. 309, Longman Scientific & Technical, New York (1994) | MR | Zbl
,[26] Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Shigaken (1986) | MR | Zbl
,[27] Zwei Verallgemeinerungen eines Satzes von Gromoll und Meyer, Bonn Mathematical Publications, Universität Bonn Mathematisches Institut (1980) | MR | Zbl
,[28] Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, Springer-Verlag, New York (1989) | MR | Zbl
, ,[29] A gravitational lens produces an odd number of images, J. Math. Phys. 26 (1985), 1592-1596 | MR | Zbl
,[30] The critical points theory for the closed geodesics problem, Math. Z. 156 (1977), 231-245 | EuDML | MR
,[31] Morse theory with low differentiability, Boll. Un. Mat. Ital. (7) 1-B (1987), 621-631 | MR | Zbl
, ,[32] A generalization of Morse lemma and its applications, Nonlinear Anal. 36 (1999), 943-960 | MR | Zbl
,[33] Semi-Riemannian Geometry, Pure and Applied Mathematics, Academic Press Inc., New York (1983) | MR
,[34] Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16 | MR | Zbl
,[35] On Fermat's principle in General Relativity. I. The general case, Classical Quantum Gravity 7 (1990), 1319-1331 | MR | Zbl
,[36] Morse theory and gravitational microlensing, J. Math. Phys. 33 (1992), 1915-1931 | MR
,[37] Multiplane gravitational lensing. I. Morse theory and image counting, J. Math. Phys. 36 (1995), 4263-4275 | MR | Zbl
,[38] The Morse index theorem in semi-Riemannian geometry, Topology 41 (2002), 1123-1159 | MR | Zbl
, ,[39] Morse theory in Hilbert space, Rocky Mountain J. Math. 3 (1973), 251-274 | MR | Zbl
,[40] Gravitational Lenses, Astronomy and Astrophysics Library, Springer, Berlin (1999)
, , ,[41] Lectures on Finsler Geometry, World Scientific Publishing Co., Singapore (2001) | MR | Zbl
,[42] Plateau's Problem and the Calculus of Variations, Princeton University Press, Princeton, NJ (1988) | MR | Zbl
,[43] A Morse theory for geodesics on a Lorentz manifold, Topology 14 (1975), 69-90 | MR | Zbl
,[44] The conjugate locus of a Riemannian manifold, Amer. J. Math. 87 (1965), 575-604 | MR | Zbl
,Cité par Sources :