Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 2, pp. 639-654.

We present a new a priori estimate for discrete coagulation–fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a priori estimate provides a global L 2 bound on the mass density and was previously used, for instance, in the context of reaction–diffusion equations.In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.

DOI : 10.1016/j.anihpc.2009.10.001
Classification : 35B45, 35Q72, 82D60
Mots-clés : Discrete coagulation–fragmentation systems, Mass conservation, Duality arguments
@article{AIHPC_2010__27_2_639_0,
     author = {Ca\~nizo, J.A. and Desvillettes, L. and Fellner, K.},
     title = {Regularity and mass conservation for discrete coagulation{\textendash}fragmentation equations with diffusion},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {639--654},
     publisher = {Elsevier},
     volume = {27},
     number = {2},
     year = {2010},
     doi = {10.1016/j.anihpc.2009.10.001},
     mrnumber = {2595194},
     zbl = {1193.35091},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.10.001/}
}
TY  - JOUR
AU  - Cañizo, J.A.
AU  - Desvillettes, L.
AU  - Fellner, K.
TI  - Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 639
EP  - 654
VL  - 27
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2009.10.001/
DO  - 10.1016/j.anihpc.2009.10.001
LA  - en
ID  - AIHPC_2010__27_2_639_0
ER  - 
%0 Journal Article
%A Cañizo, J.A.
%A Desvillettes, L.
%A Fellner, K.
%T Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 639-654
%V 27
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2009.10.001/
%R 10.1016/j.anihpc.2009.10.001
%G en
%F AIHPC_2010__27_2_639_0
Cañizo, J.A.; Desvillettes, L.; Fellner, K. Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 2, pp. 639-654. doi : 10.1016/j.anihpc.2009.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2009.10.001/

[1] H. Amann, Coagulation–fragmentation processes, Arch. Ration. Mech. Anal. 151 no. 4 (2000), 339-366 | MR | Zbl

[2] J.M. Ball, J. Carr, The discrete coagulation–fragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys. 61 no. 1 (1990), 203-234 | MR | Zbl

[3] P. Bénilan, D. Wrzosek, On an infinite system of reaction–diffusion equations, Adv. Math. Sci. Appl. 7 no. 1 (1997), 351-366 | MR | Zbl

[4] J.A. Cañizo, Some problems related to the study of interaction kernels: Coagulation, fragmentation and diffusion in kinetic and quantum equations, PhD thesis, Universidad de Granada, June 2006

[5] J. Carr, F. Costa, Asymptotic behavior of solutions to the coagulation–fragmentation equations. II. Weak fragmentation, J. Stat. Phys. 77 no. 1 (1994), 89-123 | MR | Zbl

[6] J. Carrillo, L. Desvillettes, K. Fellner, Exponential decay towards equilibrium for the inhomogeneous Aizenman–Bak model, Comm. Math. Phys. 278 no. 2 (2008), 433-451 | MR | Zbl

[7] J.F. Collet, F. Poupaud, Existence of solutions to coagulation–fragmentation systems with diffusion, Transport Theory Statist. Phys. 25 no. 3 (1996), 503-513 | MR | Zbl

[8] L. Desvillettes, K. Fellner, Entropy methods for reaction–diffusion equations: Slowly growing a priori bounds, Rev. Mat. Iberoamericana 24 no. 2 (2008), 407-431 | EuDML | MR | Zbl

[9] L. Desvillettes, K. Fellner, M. Pierre, J. Vovelle, About global existence for quadratic systems of reaction–diffusion, Adv. Nonlinear Stud. 7 no. 3 (2007), 491-511 | MR | Zbl

[10] M. Escobedo, P. Laurençot, S. Mischler, B. Perthame, Gelation and mass conservation in coagulation–fragmentation models, J. Differential Equations 195 no. 1 (2003), 143-174 | MR | Zbl

[11] M. Escobedo, S. Mischler, B. Perthame, Gelation in coagulation and fragmentation models, Comm. Math. Phys. 231 (2002), 157-188 | MR | Zbl

[12] T. Goudon, A. Vasseur, Regularity analysis for systems of reaction–diffusion equations, Annales de l'École Norm. Supérieure, in press | EuDML | Numdam | MR

[13] F. Guiaş, Convergence properties of a stochastic model for coagulation–fragmentation processes with diffusion, Stoch. Anal. Appl. 19 no. 2 (2001), 245-278 | MR | Zbl

[14] A. Hammond, F. Rezakhanlou, Moment bounds for the Smoluchowski equation and their consequences, Comm. Math. Phys. 276 no. 3 (2007), 645-670 | MR | Zbl

[15] P. Laurençot, S. Mischler, Global existence for the discrete diffusive coagulation–fragmentation equation in L 1 , Rev. Mat. Iberoamericana 18 (2002), 731-745 | EuDML | MR | Zbl

[16] M. Pierre, Weak solutions and supersolutions in L 1 for reaction–diffusion systems, J. Evol. Equ. 3 no. 1 (2003), 153-168 | MR | Zbl

[17] M. Pierre, D. Schmitt, Blowup in reaction–diffusion systems with dissipation of mass, SIAM Rev. 42 (2000), 93-106 | MR | Zbl

[18] D. Wrzosek, Existence of solutions for the discrete coagulation–fragmentation model with diffusion, Topol. Methods Nonlinear Anal. 9 no. 2 (1997), 279-296 | MR | Zbl

[19] D. Wrzosek, Mass-conserving solutions to the discrete coagulation–fragmentation model with diffusion, Nonlinear Anal. 49 no. 3 (2002), 297-314 | MR | Zbl

[20] D. Wrzosek, Weak solutions to the Cauchy problem for the diffusive discrete coagulation–fragmentation system, J. Math. Anal. Appl. 289 no. 2 (2004), 405-418 | MR | Zbl

Cité par Sources :