We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion. The integrability assumption is shown to be optimal.
Mots clés : Local homeomorphism, Differential inclusion, Finite distortion
@article{AIHPC_2010__27_2_517_0, author = {Kovalev, Leonid V. and Onninen, Jani and Rajala, Kai}, title = {Invertibility of {Sobolev} mappings under minimal hypotheses}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {517--528}, publisher = {Elsevier}, volume = {27}, number = {2}, year = {2010}, doi = {10.1016/j.anihpc.2009.09.010}, mrnumber = {2595190}, zbl = {1190.30019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.09.010/} }
TY - JOUR AU - Kovalev, Leonid V. AU - Onninen, Jani AU - Rajala, Kai TI - Invertibility of Sobolev mappings under minimal hypotheses JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 517 EP - 528 VL - 27 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2009.09.010/ DO - 10.1016/j.anihpc.2009.09.010 LA - en ID - AIHPC_2010__27_2_517_0 ER -
%0 Journal Article %A Kovalev, Leonid V. %A Onninen, Jani %A Rajala, Kai %T Invertibility of Sobolev mappings under minimal hypotheses %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 517-528 %V 27 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2009.09.010/ %R 10.1016/j.anihpc.2009.09.010 %G en %F AIHPC_2010__27_2_517_0
Kovalev, Leonid V.; Onninen, Jani; Rajala, Kai. Invertibility of Sobolev mappings under minimal hypotheses. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 2, pp. 517-528. doi : 10.1016/j.anihpc.2009.09.010. http://www.numdam.org/articles/10.1016/j.anihpc.2009.09.010/
[1] Extremal mappings of finite distortion, Proc. London Math. Soc. (3) 91 no. 3 (2005), 655-702 | MR | Zbl
, , , ,[2] Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 no. 3–4 (1981), 315-328 | MR | Zbl
,[3] The behavior of mappings with bounded distortion when the distortion coefficient is close to one, Sibirsk. Mat. Zh. 12 (1971), 1250-1258 | MR | Zbl
,[4] Quasiconformal mappings, and spaces of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 no. 3 (1976), 515-531 | MR
, ,[5] BLD-mappings in are locally invertible, Math. Ann. 318 no. 2 (2000), 391-396 | MR | Zbl
, ,[6] Sobolev mappings with integrable dilatations, Arch. Ration. Mech. Anal. 125 no. 1 (1993), 81-97 | MR | Zbl
, ,[7] Mappings of finite distortion: Discreteness and openness for quasi-light mappings, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 no. 3 (2005), 331-342 | EuDML | Numdam | MR | Zbl
, ,[8] Mappings of finite distortion: Hausdorff measure of zero sets, Math. Ann. 324 no. 3 (2002), 451-464 | MR | Zbl
, ,[9] Geometric Function Theory and Non-Linear Analysis, Oxford Univ. Press, New York (2001) | MR
, ,[10] On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 no. 1 (1993), 181-188 | MR | Zbl
, ,[11] On quasi-isometric mappings. I, Comm. Pure Appl. Math. 21 (1968), 77-110 | MR | Zbl
,[12] Mappings of finite distortion: Capacity and modulus inequalities, J. Reine Angew. Math. 599 (2006), 1-26 | MR | Zbl
, ,[13] Mappings of finite distortion: Injectivity radius of a local homeomorphism, Future Trends in Geometric Function Theory, Rep. Univ. Jyväskylä Dep. Math. Stat. vol. 92, Univ. Jyväskylä, Jyväskylä (2003), 169-174 | MR | Zbl
, , ,[14] L.V. Kovalev, J. Onninen, On invertibility of Sobolev mappings, preprint, 2008, arXiv:0812.2350 | MR
[15] An extension of Reshetnyak's theorem, Indiana Univ. Math. J. 47 no. 3 (1998), 1131-1145 | MR | Zbl
, ,[16] Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 488 (1971) | MR | Zbl
, , ,[17] Mappings of finite distortion: Minors of the differential matrix, Calc. Var. Partial Differential Equations 21 no. 4 (2004), 335-348 | MR | Zbl
,[18] The local homeomorphism property of spatial quasiregular mappings with distortion close to one, Geom. Funct. Anal. 15 no. 5 (2005), 1100-1127 | MR | Zbl
,[19] K. Rajala, Reshetnyak's theorem and the inner distortion, Pure Appl. Math. Q., in press, University of Jyväskylä preprint, No. 336, 2007 | MR
[20] K. Rajala, Remarks on the Iwaniec–Šverák conjecture, University of Jyväskylä preprint, No. 377, 2009 | MR
[21] Quasiregular Mappings, Springer-Verlag, Berlin (1993) | MR | Zbl
,[22] Almost-everywhere injectivity in nonlinear elasticity, Proc. Roy. Soc. Edinburgh Sect. A 109 no. 1–2 (1988), 79-95 | MR | Zbl
,[23] Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math. vol. 229, Springer-Verlag, Berlin (1971) | MR | Zbl
,[24] M.A. Lavrentyev's theorem on quasiconformal space maps, Mat. Sb. (N.S.) 74 no. 116 (1967), 417-433 | MR | Zbl
,Cité par Sources :