We consider the nonlinear Klein–Gordon equations coupled with the Born–Infeld theory under the electrostatic solitary wave ansatz. The existence of the least-action solitary waves is proved in both bounded smooth domain case and case. In particular, for bounded smooth domain case, we study the asymptotic behaviors and profiles of the positive least-action solitary waves with respect to the frequency parameter ω. We show that when κ and ω are suitably large, the least-action solitary waves admit only one local maximum point. When , the point-condensation phenomenon occurs if we consider the normalized least-action solitary waves.
@article{AIHPC_2010__27_1_351_0, author = {Yu, Yong}, title = {Solitary waves for nonlinear {Klein{\textendash}Gordon} equations coupled with {Born{\textendash}Infeld} theory}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {351--376}, publisher = {Elsevier}, volume = {27}, number = {1}, year = {2010}, doi = {10.1016/j.anihpc.2009.11.001}, mrnumber = {2580514}, zbl = {1184.35286}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/} }
TY - JOUR AU - Yu, Yong TI - Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 351 EP - 376 VL - 27 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/ DO - 10.1016/j.anihpc.2009.11.001 LA - en ID - AIHPC_2010__27_1_351_0 ER -
%0 Journal Article %A Yu, Yong %T Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 351-376 %V 27 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/ %R 10.1016/j.anihpc.2009.11.001 %G en %F AIHPC_2010__27_1_351_0
Yu, Yong. Solitary waves for nonlinear Klein–Gordon equations coupled with Born–Infeld theory. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 351-376. doi : 10.1016/j.anihpc.2009.11.001. http://www.numdam.org/articles/10.1016/j.anihpc.2009.11.001/
[1] Dispersionless limit of integrable models, Brazilian J. Physics 30 no. 2 (June 2000), 455-468
,[2] Modified field equations with a finite radius of the electron, Nature 132 (1933), 282 | Zbl
,[3] On the quantum theory of the electromagnetic field, Proc. Roy. Soc. A 143 (1934), 410-437 | Zbl
,[4] Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14 no. 4 (2002), 409-420 | MR | Zbl
, ,[5] Solitary waves in the nonlinear wave equation and in gauge theories, Fixed Point Theory Appl. 1 (2007), 61-86 | MR | Zbl
, ,[6] Solitary waves in classical field theory, , (ed.), Nonlinear Analysis and Applications to Physical Sciences, Springer, Milano (2004), 1-50 | MR | Zbl
, ,[7] On the existence of infinitely many geodesics on space–time manifolds, Adv. in Math. 105 (1994), 1-25 | MR | Zbl
, ,[8] Foundation of the new field theory, Nature 132 (1933), 1004 | Zbl
, ,[9] Foundation of the new field theory, Proc. Roy. Soc. A 144 (1934), 425-451 | Zbl
, ,[10] Critical points theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273 | EuDML | MR | Zbl
, ,[11] Existence and non-existence of solitary waves for the critical Klein–Gordon equation coupled with Maxwell's equations, Nonlinear Anal. 58 (2004), 733-747 | MR | Zbl
,[12] Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 no. 5 (2004), 893-906 | MR | Zbl
, ,[13] Nonlinear Klein–Gordon equations coupled with Born–Infeld type equations, Elect. J. Diff. Eqns. 26 (2002), 1-13 | EuDML | MR | Zbl
, ,[14] Asymptotic results for finite energy solutions of semilinear elliptic equations, J. Differential Equations 98 (1992), 34-56 | MR | Zbl
,[15] Existence and non-existence results for semilinear elliptic problems in unbounded domanis, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), 1-14 | MR | Zbl
, ,[16] Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys. 171 (1995), 323-350 | MR | Zbl
, ,[17] Born–Infeld type equations for electrostatic fields, J. of Math. Phys. 43 no. 11 (2002), 5698-5706 | MR | Zbl
, , ,[18] Born–Infeld particles and Dirichlet p-branes, Nucl. Phys. B 514 (1998), 603 | MR | Zbl
,[19] Symmetry of positive solutions of nonlinear elliptic equations in , Adv. in Math. 7A no. Suppl. Stud. (1981), 369-402 | MR
, , ,[20] Elliptic Partial Differential Equations of Second Order, Springer (2001) | MR | Zbl
, ,[21] Uniqueness of positive solutions of in , Arch. Rational Mech. Anal. 105 (1989), 243-266 | MR | Zbl
,[22] Existence and stability of solitary waves in non-linear Klein–Gordon–Maxwell equations, Rev. Math. Phys. 18 (2006), 747-779 | MR | Zbl
,[23] Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), 1-27 | MR | Zbl
, , ,[24] Gauged harmonic maps, Born–Infeld electromagnetism, and magnetic vortices, CPAM 56 (2003), 1631-1665 | MR | Zbl
, ,[25] Coupled Klein–Gordon and Born–Infeld type equations: Looking for solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), 1519-1528 | MR | Zbl
,[26] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, CPAM XLVIII (1995), 731-768 | MR | Zbl
, ,[27] Chaplygin Gas and Brane, Proceedings of the 8th International Conference on Geometry Integrability & Quantization (June 2007), 279-291 | MR
,[28] The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30 | MR | Zbl
,[29] TASI lectures on D-branes, arXiv:hep-th/9611050 , Brane physics in M-theory, hep-th/9807171 , Born–Infeld action in string theory, hep-th/9906075
,[30] Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Ser. Math. vol. 65 (1986) | MR
,[31] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 3rd edition
[32] String theory and noncommutative geometry, JHEP 9909 (1999), 032 | MR
, ,[33] On the shape of least-energy solutions to a semilinear Neumann problem, CPAM 44 (1991), 819-851 | MR | Zbl
, ,[34] Classical solutions in the Born–Infeld theory, Proceedings: Mathematical, Physical and Engineering Sciences 456 no. 1995 (2000), 615-640 | MR | Zbl
,[35] Multiple entire solutions of a semilinear elliptic equation, Nonlinear Anal. 12 (1988), 1297-1316 | MR | Zbl
,[36] Spike-layered solutions of singularly perturbed quasilinear Dirichlet problems, J. Math. Anal. Appl. 283 (2003), 667-680 | MR | Zbl
, ,Cité par Sources :