Optimal regularity for planar mappings of finite distortion
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 1-19.

Let f:Ω 2 be a mapping of finite distortion, where Ω 2 . Assume that the distortion function K(x,f) satisfies e K(·,f) L 𝑙𝑜𝑐 p (Ω) for some p>0. We establish optimal regularity and area distortion estimates for f. In particular, we prove that |Df| 2 log β-1 (e+|Df|)L 𝑙𝑜𝑐 1 (Ω) for every β<p. This answers positively, in dimension n=2, the well-known conjectures of Iwaniec and Sbordone [T. Iwaniec, C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 519–572, Conjecture 1.1] and of Iwaniec, Koskela and Martin [T. Iwaniec, P. Koskela, G. Martin, Mappings of BMO-distortion and Beltrami-type operators, J. Anal. Math. 88 (2002) 337–381, Conjecture 7.1].

DOI : 10.1016/j.anihpc.2009.01.012
Mots clés : Mappings of finite distortion, Exponential distortion, Optimal regularity, Area distortion
@article{AIHPC_2010__27_1_1_0,
     author = {Astala, Kari and Gill, James T. and Rohde, Steffen and Saksman, Eero},
     title = {Optimal regularity for planar mappings of finite distortion},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--19},
     publisher = {Elsevier},
     volume = {27},
     number = {1},
     year = {2010},
     doi = {10.1016/j.anihpc.2009.01.012},
     zbl = {1191.30007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.012/}
}
TY  - JOUR
AU  - Astala, Kari
AU  - Gill, James T.
AU  - Rohde, Steffen
AU  - Saksman, Eero
TI  - Optimal regularity for planar mappings of finite distortion
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 1
EP  - 19
VL  - 27
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.012/
DO  - 10.1016/j.anihpc.2009.01.012
LA  - en
ID  - AIHPC_2010__27_1_1_0
ER  - 
%0 Journal Article
%A Astala, Kari
%A Gill, James T.
%A Rohde, Steffen
%A Saksman, Eero
%T Optimal regularity for planar mappings of finite distortion
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 1-19
%V 27
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.012/
%R 10.1016/j.anihpc.2009.01.012
%G en
%F AIHPC_2010__27_1_1_0
Astala, Kari; Gill, James T.; Rohde, Steffen; Saksman, Eero. Optimal regularity for planar mappings of finite distortion. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 1-19. doi : 10.1016/j.anihpc.2009.01.012. http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.012/

[1] L.V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton (1966), Amer. Math. Soc. (2006) | Zbl

[2] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60 | Zbl

[3] K. Astala, T. Iwaniec, P. Koskela, G. Martin, Mappings of BMO-bounded distortion, Math. Ann. 317 (2000), 703-726 | Zbl

[4] K. Astala, T. Iwaniec, G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser. vol. 48, Princeton Univ. Press (2009) | Zbl

[5] K. Astala, T. Iwaniec, E. Saksman, Beltrami operators in the plane, Duke Math. J. 107 (2001), 27-56 | Zbl

[6] K. Astala, V. Nesi, Composites and quasiconformal mappings: New optimal bounds in two dimensions, Calc. Var. Partial Differential Equations 18 (2003), 335-355 | Zbl

[7] O. Blasco, Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, J. Funct. Anal. 78 (1988), 346-364 | Zbl

[8] B. Bojarski, Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR 102 (1955), 661-664

[9] M.A. Brakalova, J.A. Jenkins, On solutions of the Beltrami equation, J. Anal. Math. 76 (1998), 67-92 | Zbl

[10] G. David, Solutions de l'equation de Beltrami avec μ =1, Ann. Acad. Sci. Fenn. Ser. AI Math. 13 (1988), 25-70 | Zbl

[11] P.L. Duren, Univalent Functions, Springer-Verlag (1983) | Zbl

[12] D. Faraco, P. Koskela, X. Zhong, Mappings of finite distortion: The degree of regularity, Adv. Math. 190 (2005), 300-318 | Zbl

[13] F.W. Gehring, O. Lehto, On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. Ser. AI Math. 272 (1959) | Zbl

[14] T. Iwaniec, G.J. Martin, Geometric Function Theory and Nonlinear Analysis, Oxford Univ. Press (2001)

[15] T. Iwaniec, G.J. Martin, The Beltrami equation, Mem. Amer. Math. Soc. 191 (2008)

[16] T. Iwaniec, P. Koskela, G. Martin, Mappings of BMO-distortion and Beltrami-type operators, J. Anal. Math. 88 (2002), 337-381 | Zbl

[17] T. Iwaniec, P. Koskela, G. Martin, C. Sbordone, Mappings of finite distortion: L n log χ L-integrability, J. London Math. Soc. (2) 67 (2003), 123-136 | Zbl

[18] T. Iwaniec, C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 519-572 | EuDML | Numdam | Zbl

[19] T. Iwaniec, V. Šverák, On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), 181-188 | Zbl

[20] O. Lehto, Homeomorphisms with a given dilatation, Proceedings of the Fifteenth Scandinavian Congress, Oslo, 1968, Lecture Notes in Math. vol. 118, Springer-Verlag (1970), 58-73 | Zbl

[21] O. Lehto, K. Virtanen, Quasiconformal Mappings in the Plane, Springer-Verlag (1973) | Zbl

[22] O. Martio, J. Maly, Lusin's condition (N) and mappings of the class W 1,n , J. Reine Angew. Math. 458 (1995), 19-36 | EuDML | Zbl

[23] P. Tukia, Compactness properties of μ-homeomorphisms, Ann. Acad. Sci. Math. 16 (1991), 47-69

[24] V. Ryazanov, U. Srebro, E. Yakubov, BMO-quasiconformal mappings, J. Anal. Math. 83 (2001), 1-20 | Zbl

Cité par Sources :