@article{AIHPC_2009__26_6_2581_0, author = {Manfredi, J. J. and Rossi, J. D. and Urbano, J. M.}, title = {$p\left(x\right)${-Harmonic} {Functions} {With} {Unbounded} {Exponent} in a {Subdomain}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2581--2595}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.09.008}, mrnumber = {2569909}, zbl = {1180.35242}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.09.008/} }
TY - JOUR AU - Manfredi, J. J. AU - Rossi, J. D. AU - Urbano, J. M. TI - $p\left(x\right)$-Harmonic Functions With Unbounded Exponent in a Subdomain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2581 EP - 2595 VL - 26 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2009.09.008/ DO - 10.1016/j.anihpc.2009.09.008 LA - en ID - AIHPC_2009__26_6_2581_0 ER -
%0 Journal Article %A Manfredi, J. J. %A Rossi, J. D. %A Urbano, J. M. %T $p\left(x\right)$-Harmonic Functions With Unbounded Exponent in a Subdomain %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2581-2595 %V 26 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2009.09.008/ %R 10.1016/j.anihpc.2009.09.008 %G en %F AIHPC_2009__26_6_2581_0
Manfredi, J. J.; Rossi, J. D.; Urbano, J. M. $p\left(x\right)$-Harmonic Functions With Unbounded Exponent in a Subdomain. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2581-2595. doi : 10.1016/j.anihpc.2009.09.008. http://www.numdam.org/articles/10.1016/j.anihpc.2009.09.008/
[1] Regularity Results for Stationary Electro-Rheological Fluids, Arch. Ration. Mech. Anal. 164 (2002) 213-259. | MR | Zbl
, ,[2] Gradient Estimates for the -Laplacean System, J. Reine Angew. Math. 584 (2005) 117-148. | MR | Zbl
, ,[3] Lecture Notes on Optimal Transport Problems, in: Mathematical Aspects of Evolving Interfaces, Funchal, 2000, Lecture Notes in Math., vol. 1812, Springer, Berlin, 2003, pp. 1-52. | MR | Zbl
,[4] Extensions of Functions Satisfying Lipschitz Conditions, Ark. Mat. 6 (1967) 551-561. | MR | Zbl
,[5] A Tour of the Theory of Absolutely Minimizing Functions, Bull. Amer. Math. Soc. 41 (2004) 439-505. | MR | Zbl
, , ,[6] Fully Nonlinear Neumann Type Conditions for Second-Order Elliptic and Parabolic Equations, J. Differential Equations 106 (1993) 90-106. | MR | Zbl
,[7] Limits as of and Related Extremal Problems, Rend. Semin. Mat. Univ. Politec. Torino 1989 (1991) 15-68. | MR
, , ,[8] A Mixed Problem for the Infinity Laplacian Via Tug-of-War Games, Calc. Var. Partial Differential Equations 34 (2009) 307-320. | MR | Zbl
, , ,[9] User's Guide to Viscosity Solutions of Second Order Partial Differential Equations, Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR | Zbl
, , ,[10] Open Problems in Variable Exponent Lebesgue and Sobolev Spaces, in: , (Eds.), FSDONA04 Proceedings, Milovy, Czech Republic, 2005, pp. 38-58.
, , ,[11] A Capacity Approach to the Poincaré Inequality and Sobolev Imbeddings in Variable Exponent Sobolev Spaces, Rev. Mat. Complut. 17 (2004) 129-146. | MR | Zbl
, ,[12] The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces With Zero Boundary Values, Potential Anal. 25 (2006) 205-222. | MR | Zbl
, , , ,[13] Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient, Arch. Ration. Mech. Anal. 123 (1993) 51-74. | MR | Zbl
,[14] On Spaces and , Czechoslovak Math. J. 41 (116) (1991) 592-618. | MR | Zbl
, ,[15] Notes on the P-Laplace Equation, Report, University of Jyväskylä, Department of Mathematics and Statistics, 102, University of Jyväskylä, Jyväskylä, 2006; available on line at:, http://www.math.jyu.fi/research/reports/rep102.pdf. | MR
,[16] Tug-of-War and the Infinity Laplacian, J. Amer. Math. Soc. 22 (2009) 167-210. | MR
, , , ,[17] Tug-of-War With Noise: a Game Theoretic View of the P-Laplacian, Duke Math. J. 145 (2008) 91-120. | MR
, ,Cité par Sources :