@article{AIHPC_2009__26_6_2317_0, author = {Privat, Yannick}, title = {The {Optimal} {Shape} of a {Dendrite} {Sealed} at {Both} {Ends}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2317--2333}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.04.004}, mrnumber = {2569896}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.04.004/} }
TY - JOUR AU - Privat, Yannick TI - The Optimal Shape of a Dendrite Sealed at Both Ends JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2317 EP - 2333 VL - 26 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2009.04.004/ DO - 10.1016/j.anihpc.2009.04.004 LA - en ID - AIHPC_2009__26_6_2317_0 ER -
%0 Journal Article %A Privat, Yannick %T The Optimal Shape of a Dendrite Sealed at Both Ends %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2317-2333 %V 26 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2009.04.004/ %R 10.1016/j.anihpc.2009.04.004 %G en %F AIHPC_2009__26_6_2317_0
Privat, Yannick. The Optimal Shape of a Dendrite Sealed at Both Ends. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2317-2333. doi : 10.1016/j.anihpc.2009.04.004. http://www.numdam.org/articles/10.1016/j.anihpc.2009.04.004/
[1] Extremal Problems for Eigenvalues of the Sturm-Liouville Type, in: General Inequalities, 5, Oberwolfach, 1986, Internat. Schriftenreibe Numer. Math., vol. 80, Birkhäuser, Basel, 1987. | MR | Zbl
,[2] Extremal Eigenvalue Problems for Two-Phase Conductors, Arch. Ration. Mech. Anal. 136 (1996) 101-117. | MR | Zbl
, ,[3] Recovering the Passive Properties of Tapered Dendrites From Single and Dual Potential Recordings, Math. Biosci. 190 (1) (2004) 9-37. | MR | Zbl
, ,[4] Analyse Mathématique Et Calcul Numérique Pour Les Sciences Et Les Techniques, Masson, 1988. | Zbl
, ,[5] On Spectral Theory of Elliptic Operators, Birkhäuser, 1996. | MR | Zbl
, ,[6] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, Heidelberg, 1977, 327-340. | MR | Zbl
, ,[7] Extremum Problems for Eigenvalues of Elliptic Operators, Front. Math., Birkhäuser, 2006. | MR | Zbl
,[8] Shape Minimisation of Dendritic Attenuation, Appl. Math. Optim. 57 (1) (February 2008) 1-16. | MR | Zbl
, ,[9] Variation Et Optimisation De Formes, Math. Appl., Springer-Verlag, 2005. | MR
, ,[10] Perturbation Theory for Linear Operators, Classics Math., Springer-Verlag, Berlin, 1995, reprint of the 1980 edition. | MR | Zbl
,[11] An Optimal Bronchial Tree May Be Dangerous, Nature 427 (2004) 633-636.
, , , ,[12] Interplay Between Geometry and Flow Distribution in an Airway Tree, Phys. Rev. Lett. 90 (2003) 148101-1-148101-4.
, , , ,[13] An Historical Perspective on Modeling Dendrites, in: , , (Eds.), Dendrites, 2nd edition, Oxford University Press, 2008, Chapter 12.
,[14] Cable Theory for Dendritic Neurons, in: , (Eds.), Methods in Neuronal Modeling. From Ions to Networks, 2nd edition, MIT Press, Cambridge, MA, 1998, pp. 27-92, Chapter 2.
, ,[15] Theory of Physiological Properties of Dendrites, Ann. New York Acad. Sci. 96 (1962) 1071.
,[16] Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Ser. Comput. Math., vol. 10, Springer, Berlin, 1992. | MR | Zbl
, ,[17] Regular Eigenvalue Problem With Eigenvalue Parameter in the Boundary Condition, Math. Z. 133 (1973) 301-312. | MR | Zbl
,Cité par Sources :