Quasistatic Evolution in the Theory of Perfect Elasto-Plastic Plates. Part II : Regularity of Bending Moments
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2137-2163.
@article{AIHPC_2009__26_6_2137_0,
     author = {Demyanov, A.},
     title = {Quasistatic {Evolution} in the {Theory} of {Perfect} {Elasto-Plastic} {Plates.} {Part} {II} : {Regularity} of {Bending} {Moments}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {2137--2163},
     publisher = {Elsevier},
     volume = {26},
     number = {6},
     year = {2009},
     doi = {10.1016/j.anihpc.2009.01.006},
     mrnumber = {2569889},
     zbl = {1177.74235},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.006/}
}
TY  - JOUR
AU  - Demyanov, A.
TI  - Quasistatic Evolution in the Theory of Perfect Elasto-Plastic Plates. Part II : Regularity of Bending Moments
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 2137
EP  - 2163
VL  - 26
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.006/
DO  - 10.1016/j.anihpc.2009.01.006
LA  - en
ID  - AIHPC_2009__26_6_2137_0
ER  - 
%0 Journal Article
%A Demyanov, A.
%T Quasistatic Evolution in the Theory of Perfect Elasto-Plastic Plates. Part II : Regularity of Bending Moments
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 2137-2163
%V 26
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.006/
%R 10.1016/j.anihpc.2009.01.006
%G en
%F AIHPC_2009__26_6_2137_0
Demyanov, A. Quasistatic Evolution in the Theory of Perfect Elasto-Plastic Plates. Part II : Regularity of Bending Moments. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2137-2163. doi : 10.1016/j.anihpc.2009.01.006. http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.006/

[1] Anzellotti G., On the Extremal Stress and Displacement in Hencky Plasticity, Duke Math. J. 51 (1984) 133-147. | MR | Zbl

[2] Bensoussan A., Frehse J., Asymptotic Behaviour of the Time-Dependent Norton-Hoff Law in Plasticity Theory and H 1 Regularity, Comment. Math. Univ. Carolinae 37 (2) (1996) 285-304. | MR | Zbl

[3] Dal Maso G., Demyanov A., Desimone A., Quasistatic Evolution Problems for Pressure-Sensitive Plastic Materials, Milan J. Math. 75 (2007) 117-134. | MR

[4] Dal Maso G., Desimone A., Mora M. G., Quasistatic Evolution Problems for Linearly Elastic-Perfectly Plastic Materials, Arch. Ration. Mech. Anal. 180 (2) (2006) 237-291. | MR | Zbl

[5] Demengel F., Compactness Theorems for Spaces of Functions With Bounded Derivatives and Applications to Limit Analysis Problems in Plasticity, Arch. Ration. Mech. Anal. 105 (1989) 123-161. | MR | Zbl

[6] Demyanov A., Regularity of Solutions in Prandtl-Reuss Perfect Plasticity, Calc. Var 34 (2009) 23-72. | MR | Zbl

[7] Demyanov A., Quasistatic Evolution in the Theory of Perfectly Elasto-Plastic Plates. Part I: Existence of a Weak Solution, Math. Models Meth. Appl. Sci. 19 (2) (2009) 229-256. | MR | Zbl

[8] Fuchs M., Seregin G. A., Variational Methods for Problems From Plasticity Theory and for Generalized Newtonian Fluids, Springer-Verlag, Berlin, 2000. | MR | Zbl

[9] Knees D., Global Regularity of the Elastic Fields of a Power-Law Model on Lipschitz Domains, Math. Meth. Appl. Sci 29 (2006) 1363-1391. | MR

[10] Mazya V., Sobolev Spaces, Springer-Verlag, 1985. | Zbl

[11] Mielke A., Analysis of Energetic Models for Rate-Independent Materials, in: Beijing, 2002, Proceedings of the International Congress of Mathematicians, vol. III, Higher Ed. Press, Beijing, 2002, pp. 817-828. | MR | Zbl

[12] Murat F., Trombetti C., A Chain Rule Formula for the Composition of a Vector-Valued Function by a Piecewise Smooth Function, Boll. Un. Mat. Ital. Sez. B 6 (3) (2003) 581-595. | MR | Zbl

[13] Seregin G. A., Remarks on Regularity Up to the Boundary for Solutions to Variational Problems in Plasticity Theory, J. Math. Sci. 93 (5) (1999) 779-783. | MR | Zbl

[14] Seregin G. A., Two-Dimensional Variational Problems in Plasticity Theory, Izv. Math. 60 (1) (1996) 179-216. | MR | Zbl

[15] Seregin G. A., On Regularity of Minimizers of Certain Variational Problems in Plasticity Theory, St. Petersburg Math. J. 4 (1993) 1257-1272. | MR | Zbl

[16] Seregin G. A., Diferentiability Properties of Weak Solutions of Certain Variational Problems in the Theory of Perfect Elastoplastic Plates, Appl. Math. Optim. 28 (1993) 307-335. | MR | Zbl

[17] Seregin G. A., On Differentiability Properties of the Stress-Tensor in the Coulomb-Mohr Theory of Plasticity, St. Petersburg Math. J. 4 (6) (1993) 1257-1272. | MR | Zbl

[18] Seregin G. A., Differential Properties of Solution of Evolution Variational Inequalities in the Theory of Plasticity, J. Math. Sci 72 (6) (1994) 3449-3458. | MR

[19] Seregin G. A., Differentiability of Local Extremals of Variational Problems in the Mechanics of Perfect Elastoplastic Media, Differ. Uravn. 23 (11) (1987) 1981-1991, (in Russian). English translation:, Differential Equations 23 (1987) 1349-1358. | MR | Zbl

[20] G.A. Seregin, Private communications.

[21] Temam R., Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985, Translation of, Problèmes mathématiques en plasticité, Gauthier-Villars, Paris, 1983. | MR

Cité par Sources :