@article{AIHPC_2009__26_4_1361_0, author = {Cuccagna, Scipio and Tarulli, Mirko}, title = {On {Asymptotic} {Stability} in {Energy} {Space} of {Ground} {States} of {NLS} in {2D}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1361--1386}, publisher = {Elsevier}, volume = {26}, number = {4}, year = {2009}, doi = {10.1016/j.anihpc.2008.12.001}, mrnumber = {2542729}, zbl = {1171.35470}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.12.001/} }
TY - JOUR AU - Cuccagna, Scipio AU - Tarulli, Mirko TI - On Asymptotic Stability in Energy Space of Ground States of NLS in 2D JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1361 EP - 1386 VL - 26 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2008.12.001/ DO - 10.1016/j.anihpc.2008.12.001 LA - en ID - AIHPC_2009__26_4_1361_0 ER -
%0 Journal Article %A Cuccagna, Scipio %A Tarulli, Mirko %T On Asymptotic Stability in Energy Space of Ground States of NLS in 2D %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1361-1386 %V 26 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2008.12.001/ %R 10.1016/j.anihpc.2008.12.001 %G en %F AIHPC_2009__26_4_1361_0
Cuccagna, Scipio; Tarulli, Mirko. On Asymptotic Stability in Energy Space of Ground States of NLS in 2D. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 4, pp. 1361-1386. doi : 10.1016/j.anihpc.2008.12.001. http://www.numdam.org/articles/10.1016/j.anihpc.2008.12.001/
[1] Spectral Properties of Schrodinger Operators and Scattering Theory, Ann. Sc. Norm. Pisa 2 (1975) 151-218. | Numdam | MR | Zbl
,[2] Global Strichartz Estimates for Nontrapping Geometries: About an Article by H. Smith and C. Sogge, Comm. Partial Differential Equations 28 (2003) 1675-1683. | MR | Zbl
,[3] Scattering for the Nonlinear Schrödinger Equation: States Close to a Soliton, St. Petersburg Math. J. 4 (1993) 1111-1142. | MR | Zbl
, ,[4] On the Stability of Solitary Waves for Nonlinear Schrödinger Equations, in: (Ed.), Nonlinear Evolution Equations, Transl. Ser. 2, vol. 164, Amer. Math. Soc., Providence, RI, 1995, pp. 75-98. | MR | Zbl
, ,[5] On the Asymptotic Stability of Solitary Waves of Nonlinear Schrödinger Equations, Ann. Inst. H. Poincaré. Anal. Non Linéaire 20 (2003) 419-475. | Numdam | MR | Zbl
, ,[6] Maximal Functions Associated With Filtrations, J. Funct. Anal. 179 (2001) 409-425. | MR | Zbl
, ,[7] A Revision of “On Asymptotic Stability in Energy Space of Ground States of NLS in 1D”, http://arxiv.org/abs/0711.4192. | MR
,[8] Stabilization of Solutions to Nonlinear Schrödinger Equations, Comm. Pure Appl. Math. 54 (2001) 1110-1145. | MR | Zbl
,[9] On Asymptotic Stability of Ground States of NLS, Rev. Math. Phys. 15 (2003) 877-903. | MR | Zbl
,[10] On Asymptotic Stability in Energy Space of Ground States for Nonlinear Schrödinger Equations, Comm. Math. Phys. 284 (2008) 51-77. | MR | Zbl
, ,[11] Spectra of Positive and Negative Energies in the Linearization of the NLS Problem, Comm. Pure Appl. Math. 58 (2005) 1-29. | MR | Zbl
, , ,[12] Relaxation of Solitons in Nonlinear Schrödinger Equations With Potential, Adv. Math. 216 (2007) 443-490. | MR | Zbl
, ,[13] Stability of Solitary Waves in the Presence of Symmetries, I, J. Funct. Anal. 74 (1987) 160-197. | MR | Zbl
, , ,[14] Stability of Solitary Waves in the Presence of Symmetries, II, J. Funct. Anal. 94 (1990) 308-348. | MR | Zbl
, , ,[15] Asymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations With Small Solitary Waves, Int. Math. Res. Notices 66 (2004) 3559-3584. | MR | Zbl
, , ,[16] Spectral Properties of Schrödinger Operators and Time Decay of the Wave Functions, Duke Math. J. 46 (1979) 583-611. | MR | Zbl
, ,[17] A Unified Approach to Resolvent Expansions at Thresholds, Rev. Math. Phys. 13 (2001) 717-754. | MR | Zbl
, ,[18] A Remark on Boundedness of Wave Operators for Two-Dimensional Schrödinger Operators, Comm. Math. Phys. 225 (2002) 633-637. | MR | Zbl
, ,[19] Wave Operators and Similarity for Some Non-Selfadjoint Operators, Math. Ann. 162 (1966) 258-269. | MR | Zbl
,[20] On the Asymptotic Stability of Bound States in 2D Cubic Scrödinger Equation, Comm. Math. Phys. 272 (2007) 443-468. | MR
, ,[21] Asymptotic Stability of Small Solitons to 1D NLS With Potential, http://arxiv.org/abs/math.AP/0605031.
,[22] Asymptotic Stability of Small Solitons for 2D Nonlinear Schrödinger Equations With Potential, J. Math. Kyoto Univ. 47 (2007) 599-620. | MR | Zbl
,[23] On the Formation of Singularities in Solutions of the Critical Nonlinear Schrödinger Equation, Ann. Henri Poincaré 2 (2001) 605-673. | MR | Zbl
,[24] Invariant Manifolds for a Class of Dispersive, Hamiltonian Partial Differential Equations, J. Diff. Eq. 141 (1997) 310-326. | MR | Zbl
, ,[25] Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1978. | MR | Zbl
, ,[26] Dispersive Estimates for Schrödinger Operators in Dimension Two, Comm. Math. Phys. 257 (2005) 87-117. | MR | Zbl
,[27] Instability of Nonlinear Bound States, Comm. Math. Phys. 100 (1985) 173-190. | MR | Zbl
, ,[28] Global Strichartz Estimates for Nontrapping Perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000) 2171-2183. | MR | Zbl
, ,[29] Multichannel Nonlinear Scattering for Nonintegrable Equations, Comm. Math. Phys. 133 (1990) 116-146. | MR | Zbl
, ,[30] Multichannel Nonlinear Scattering II. the Case of Anisotropic Potentials and Data, J. Differential Equations 98 (1992) 376-390. | MR | Zbl
, ,[31] Selection of the Ground State for Nonlinear Schrödinger Equations, Rev. Math. Phys. 16 (2004) 977-1071. | MR | Zbl
, ,[32] Partial Differential Equations II, Appl. Math. Sci., vol. 116, Springer, 1997. | MR
,[33] Asymptotic Dynamics of Nonlinear Schrödinger Equations: Resonance Dominated and Radiation Dominated Solutions, Comm. Pure Appl. Math. 55 (2002) 153-216. | MR | Zbl
, ,[34] Relaxation of Excited States in Nonlinear Schrödinger Equations, Int. Math. Res. Notices 31 (2002) 1629-1673. | MR | Zbl
, ,[35] Classification of Asymptotic Profiles for Nonlinear Schrödinger Equations With Small Initial Data, Adv. Theor. Math. Phys. 6 (2002) 107-139. | MR | Zbl
, ,[36] Center Manifold for Nonintegrable Nonlinear Schrödinger Equations on the Line, Comm. Math. Phys. 170 (2000) 343-356. | MR | Zbl
,[37] Modulation Stability of Ground States of Nonlinear Schrödinger Equations, SIAM J. Math. Anal. 16 (1985) 472-491. | MR | Zbl
,[38] Lyapunov Stability of Ground States of Nonlinear Dispersive Equations, Comm. Pure Appl. Math. 39 (1986) 51-68. | MR | Zbl
,[39] The Continuity of Wave Operators for Schrödinger Operators, J. Math. Soc. Japan 47 (1995) 551-581. | MR | Zbl
,[40] The Boundedness of Wave Operators for Two Dimensional Schrödinger Operators, Comm. Math. Phys. 208 (1999) 125-152. | MR | Zbl
,Cité par Sources :