Global Attraction to Solitary Waves for Klein-Gordon Equation With Mean Field Interaction
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 855-868.
@article{AIHPC_2009__26_3_855_0,
     author = {Komech, Alexander and Komech, Andrew},
     title = {Global {Attraction} to {Solitary} {Waves} for {Klein-Gordon} {Equation} {With} {Mean} {Field} {Interaction}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {855--868},
     publisher = {Elsevier},
     volume = {26},
     number = {3},
     year = {2009},
     doi = {10.1016/j.anihpc.2008.03.005},
     mrnumber = {2526405},
     zbl = {1177.35201},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.03.005/}
}
TY  - JOUR
AU  - Komech, Alexander
AU  - Komech, Andrew
TI  - Global Attraction to Solitary Waves for Klein-Gordon Equation With Mean Field Interaction
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 855
EP  - 868
VL  - 26
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2008.03.005/
DO  - 10.1016/j.anihpc.2008.03.005
LA  - en
ID  - AIHPC_2009__26_3_855_0
ER  - 
%0 Journal Article
%A Komech, Alexander
%A Komech, Andrew
%T Global Attraction to Solitary Waves for Klein-Gordon Equation With Mean Field Interaction
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 855-868
%V 26
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2008.03.005/
%R 10.1016/j.anihpc.2008.03.005
%G en
%F AIHPC_2009__26_3_855_0
Komech, Alexander; Komech, Andrew. Global Attraction to Solitary Waves for Klein-Gordon Equation With Mean Field Interaction. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 855-868. doi : 10.1016/j.anihpc.2008.03.005. http://www.numdam.org/articles/10.1016/j.anihpc.2008.03.005/

[1] Buslaev V. S., Perel'Man G. S., Scattering for the Nonlinear Schrödinger Equation: States That Are Close to a Soliton, St. Petersburg Math. J. 4 (1993) 1111-1142. | MR | Zbl

[2] Buslaev V. S., Perel'Man G. S., On the Stability of Solitary Waves for Nonlinear Schrödinger Equations, in: Nonlinear Evolution Equations, Amer. Math. Soc. Transl. Ser. 2, vol. 164, Amer. Math. Soc., Providence, RI, 1995, pp. 75-98. | MR | Zbl

[3] Buslaev V. S., Sulem C., On Asymptotic Stability of Solitary Waves for Nonlinear Schrödinger Equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 419-475. | Numdam | MR | Zbl

[4] Cuccagna S., Asymptotic Stability of the Ground States of the Nonlinear Schrödinger Equation, Rend. Istit. Mat. Univ. Trieste 32 (2001) 105-118, (2002), dedicated to the memory of Marco Reni. | MR | Zbl

[5] Cuccagna S., Stabilization of Solutions to Nonlinear Schrödinger Equations, Comm. Pure Appl. Math. 54 (2001) 1110-1145. | MR | Zbl

[6] Cuccagna S., On Asymptotic Stability of Ground States of NLS, Rev. Math. Phys. 15 (2003) 877-903. | MR | Zbl

[7] Komech A., On Transitions to Stationary States in One-Dimensional Nonlinear Wave Equations, Arch. Ration. Mech. Anal. 149 (1999) 213-228. | MR | Zbl

[8] Komech A. I., Stabilization of the Interaction of a String With a Nonlinear Oscillator, Moscow Univ. Math. Bull. 46 (1991) 34-39. | MR | Zbl

[9] A.I. Komech, A.A. Komech, On global attraction to quantum stationary states II. Several nonlinear oscillators coupled to massive scalar field, MPI MIS Leipzig preprint 17/2007, 2007.

[10] Komech A. I., On Stabilization of String-Nonlinear Oscillator Interaction, J. Math. Anal. Appl. 196 (1995) 384-409. | MR | Zbl

[11] Komech A. I., Komech A. A., Global Attractor for a Nonlinear Oscillator Coupled to the Klein-Gordon Field, Arch. Ration. Mech. Anal. 185 (2007) 105-142. | MR | Zbl

[12] Komech A., Spohn H., Long-Time Asymptotics for the Coupled Maxwell-Lorentz Equations, Comm. Partial Differential Equations 25 (2000) 559-584. | MR | Zbl

[13] Komech A., Spohn H., Kunze M., Long-Time Asymptotics for a Classical Particle Interacting With a Scalar Wave Field, Comm. Partial Differential Equations 22 (1997) 307-335. | MR | Zbl

[14] Komech A. I., Vainberg B., On Asymptotic Stability of Stationary Solutions to Nonlinear Wave and Klein-Gordon Equations, Arch. Ration. Mech. Anal. 134 (1996) 227-248. | MR | Zbl

[15] Morawetz C. S., Strauss W. A., Decay and Scattering of Solutions of a Nonlinear Relativistic Wave Equation, Comm. Pure Appl. Math. 25 (1972) 1-31. | MR | Zbl

[16] Pillet C.-A., Wayne C. E., Invariant Manifolds for a Class of Dispersive, Hamiltonian, Partial Differential Equations, J. Differential Equations 141 (1997) 310-326. | MR | Zbl

[17] Segal I. E., The Global Cauchy Problem for a Relativistic Scalar Field With Power Interaction, Bull. Soc. Math. France 91 (1963) 129-135. | Numdam | MR | Zbl

[18] Segal I. E., Non-Linear Semi-Groups, Ann. of Math. (2) 78 (1963) 339-364. | MR | Zbl

[19] Soffer A., Weinstein M. I., Multichannel Nonlinear Scattering for Nonintegrable Equations, Commun. Math. Phys. 133 (1990) 119-146. | MR | Zbl

[20] Soffer A., Weinstein M. I., Multichannel Nonlinear Scattering for Nonintegrable Equations. II. the Case of Anisotropic Potentials and Data, J. Differential Equations 98 (1992) 376-390. | MR | Zbl

[21] Soffer A., Weinstein M. I., Resonances, Radiation Damping and Instability in Hamiltonian Nonlinear Wave Equations, Invent. Math. 136 (1999) 9-74. | MR | Zbl

[22] Strauss W. A., Decay and Asymptotics for u=fu, J. Funct. Anal. 2 (1968) 409-457. | MR | Zbl

[23] Tao T., A (Concentration-)Compact Attractor for High-Dimensional Non-Linear Schrödinger Equations, Dynam. Partial Differential Equations 4 (2007) 1-53. | MR | Zbl

Cité par Sources :