@article{AIHPC_2009__26_2_497_0, author = {Iagar, Razvan Gabriel and V\'aZquez, Juan Luis}, title = {Asymptotic {Analysis} of the $p${-Laplacian} {Flow} in an {Exterior} {Domain}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {497--520}, publisher = {Elsevier}, volume = {26}, number = {2}, year = {2009}, doi = {10.1016/j.anihpc.2007.11.004}, zbl = {1178.35070}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.11.004/} }
TY - JOUR AU - Iagar, Razvan Gabriel AU - VáZquez, Juan Luis TI - Asymptotic Analysis of the $p$-Laplacian Flow in an Exterior Domain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 497 EP - 520 VL - 26 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.11.004/ DO - 10.1016/j.anihpc.2007.11.004 LA - en ID - AIHPC_2009__26_2_497_0 ER -
%0 Journal Article %A Iagar, Razvan Gabriel %A VáZquez, Juan Luis %T Asymptotic Analysis of the $p$-Laplacian Flow in an Exterior Domain %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 497-520 %V 26 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.11.004/ %R 10.1016/j.anihpc.2007.11.004 %G en %F AIHPC_2009__26_2_497_0
Iagar, Razvan Gabriel; VáZquez, Juan Luis. Asymptotic Analysis of the $p$-Laplacian Flow in an Exterior Domain. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 2, pp. 497-520. doi : 10.1016/j.anihpc.2007.11.004. http://www.numdam.org/articles/10.1016/j.anihpc.2007.11.004/
[1] Existence and Nonexistence Results for Quasilinear Elliptic Equations Involving the P-Laplacian With a Critical Potential, Ann. Mat. Pura Appl. 182 (3) (2003) 247-270. | MR
, ,[2] Asymptotic Behaviour of the Porous Media Equation in Domains With Holes, Interfaces and Free Boundaries 9 (2007) 211-233. | MR | Zbl
, , ,[3] Existence Et Unicité De Solutions Positives Pour Certaines Équations Elliptiques Quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 307 (12) (1987) 521-524, (in French). | MR | Zbl
, ,[4] Degenerate Parabolic Equations, Series Universitext, Springer-Verlag, New York, 1993. | MR | Zbl
,[5] Homogeneous Diffusion in R With Power-Like Nonlinear Diffusivity, Arch. Rat. Mech. Anal. 103 (1) (1988) 39-80. | MR | Zbl
, ,[6] A Stability Technique for Evolution Partial Differential Equations. a Dynamical System Approach, Progress in Nonlinear Differential Equations and Their Applications, vol. 56, Birkhäuser, 2004. | MR | Zbl
, ,[7] Asymptotic Behaviour of Nonlinear Parabolic Equations With Critical Exponents. a Dynamical System Approach, J. Funct. Anal. 100 (2) (1991) 435-462. | MR | Zbl
, ,[8] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2002. | MR | Zbl
, ,[9] Localization of Solutions of Exterior Domain Problems for the Porous Media Equation With Radial Symmetry, SIAM J. Math. Anal. 31 (2000) 862-893. | MR | Zbl
, ,[10] B. Gilding, J. Gonzerkiewicz, Large time behaviour of solutions of the exterior-domain Cauchy-Dirichlet problem for the porous media equation with homogeneous boundary data, Preprint, 2005. | MR | Zbl
[11] Radial Equivalence for the Two Basic Nonlinear Degenerate Diffusion Equations, J. Math. Pures Appl. 89 (1) (2008) 1-24. | MR | Zbl
, , ,[12] R. Iagar, J.L. Vázquez, Anomalous large-time behaviour of the p-Laplacian flow in an exterior domain in low dimension, Preprint, 2008. | MR
[13] Movement of Hot Spots on the Exterior Domain of a Ball Under the Neumann Boundary Condition, J. Differential Equations 212 (2) (2005) 394-431. | MR | Zbl
,[14] K. Ishige, Movement of hot spots on the exterior domain of a ball, Preprint.
[15] Fundamental Solutions and Asymptotic Behaviour for the P-Laplacian Equation, Rev. Mat. Iberoamericana 4 (2) (1988) 339-354. | MR | Zbl
, ,[16] Asymptotic Behaviour of Solutions of the Porous Medium Equations With Changing Sign, SIAM J. Math. Anal. 22 (1) (1991) 34-45. | MR | Zbl
, ,[17] Asymptotic Behaviour of the Porous Medium Equation in an Exterior Domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (4) (1999) 183-227. | Numdam | MR | Zbl
, ,[18] Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford University Press, Oxford, 2006. | MR | Zbl
,[19] Asymptotic Behaviour for the Porous Medium Equation Posed in the Whole Space, J. Evol. Equations 3 (1) (2003) 67-118, Dedicated to Philippe Benilan. | MR | Zbl
,[20] The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, Oxford University Press, 2007. | MR | Zbl
,Cité par Sources :