@article{AIHPC_2009__26_1_271_0, author = {Zygouras, Nikos}, title = {Exponential {Convergence} for a {Periodically} {Driven} {Semilinear} {Heat} {Equation}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {271--284}, publisher = {Elsevier}, volume = {26}, number = {1}, year = {2009}, doi = {10.1016/j.anihpc.2008.01.003}, mrnumber = {2483822}, zbl = {1177.35118}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.01.003/} }
TY - JOUR AU - Zygouras, Nikos TI - Exponential Convergence for a Periodically Driven Semilinear Heat Equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 271 EP - 284 VL - 26 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2008.01.003/ DO - 10.1016/j.anihpc.2008.01.003 LA - en ID - AIHPC_2009__26_1_271_0 ER -
%0 Journal Article %A Zygouras, Nikos %T Exponential Convergence for a Periodically Driven Semilinear Heat Equation %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 271-284 %V 26 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2008.01.003/ %R 10.1016/j.anihpc.2008.01.003 %G en %F AIHPC_2009__26_1_271_0
Zygouras, Nikos. Exponential Convergence for a Periodically Driven Semilinear Heat Equation. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 271-284. doi : 10.1016/j.anihpc.2008.01.003. http://www.numdam.org/articles/10.1016/j.anihpc.2008.01.003/
[1] Diffusions and Elliptic Operators, Probability and Its Applications (New York), Springer-Verlag, New York, 1998, xiv+232 pp. | MR | Zbl
,[2] Asymptotic Analysis for Periodic Structures, North Holl. Comp., 1978. | MR | Zbl
, , ,[3] Stochastic Calculus. a Practical Introduction, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996, x+341 pp. | MR | Zbl
,[4] Uniqueness of the Invariant Measure for a Stochastic PDE Driven by Degenerate Noise, Comm. Math. Phys. 219 (3) (2001) 523-565. | MR | Zbl
, ,[5] Malliavin Calculus for Highly Degenerate 2D Stochastic Navier-Stokes Equations, C. R. Math. Acad. Sci. Paris, Ser. I 339 (11) (2004) 793-796. | MR | Zbl
, , ,[6] Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. | MR | Zbl
,[7] Topics in Propagation of Chaos, in: École D'Été De Probabilités De Saint-Flour XIX-1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 165-251. | MR | Zbl
,Cité par Sources :