@article{AIHPC_2008__25_5_907_0, author = {Bjorland, Clayton and Schonbek, Maria E.}, title = {On questions of decay and existence for the viscous {Camassa-Holm} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {907--936}, publisher = {Elsevier}, volume = {25}, number = {5}, year = {2008}, doi = {10.1016/j.anihpc.2007.07.003}, mrnumber = {2457817}, zbl = {1156.35323}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.07.003/} }
TY - JOUR AU - Bjorland, Clayton AU - Schonbek, Maria E. TI - On questions of decay and existence for the viscous Camassa-Holm equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 907 EP - 936 VL - 25 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.07.003/ DO - 10.1016/j.anihpc.2007.07.003 LA - en ID - AIHPC_2008__25_5_907_0 ER -
%0 Journal Article %A Bjorland, Clayton %A Schonbek, Maria E. %T On questions of decay and existence for the viscous Camassa-Holm equations %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 907-936 %V 25 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.07.003/ %R 10.1016/j.anihpc.2007.07.003 %G en %F AIHPC_2008__25_5_907_0
Bjorland, Clayton; Schonbek, Maria E. On questions of decay and existence for the viscous Camassa-Holm equations. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 5, pp. 907-936. doi : 10.1016/j.anihpc.2007.07.003. http://www.numdam.org/articles/10.1016/j.anihpc.2007.07.003/
[1] Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch. Rational Mech. Anal. 128 (4) (1994) 329-358. | MR | Zbl
,[2] Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (6) (1982) 771-831. | MR | Zbl
, , ,[3] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (11) (1993) 1661-1664. | MR | Zbl
, ,[4] Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett. 81 (24) (1998) 5338-5341. | MR | Zbl
, , , , , ,[5] The Camassa-Holm equations and turbulence, Phys. D 133 (1-4) (1999) 49-65. | MR
, , , , , ,[6] A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids 11 (8) (1999) 2343-2353. | MR | Zbl
, , , , , ,[7] Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. | MR | Zbl
, ,[8] J.A. Domaradzki, D.D. Holm, Navier-Stokes-alpha model: Les equations with nonlinear dispersion, 2001.
[9] The Navier-Stokes-alpha model of fluid turbulence, Phys. D 152/153 (2001) 505-519. | MR | Zbl
, , ,[10] The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations 14 (1) (2002) 1-35. | MR | Zbl
, , ,[11] The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1) (1998) 1-81. | MR | Zbl
, , ,[12] Computational models of turbulence: The lans-α model and the role of global analysis, SIAM News 38 (2005).
, ,[13] Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951) 213-231. | MR | Zbl
,[14] Attractors for the two-dimensional Navier-Stokes-α model: an α-dependence study, J. Dynam. Differential Equations 15 (4) (2003) 751-778. | MR | Zbl
, ,[15] Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934) 193-248. | JFM | MR
,[16] Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-α) equations on bounded domains, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (1784) (2001) 1449-1468. | MR | Zbl
, ,[17] Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2) 36 (4) (1984) 623-646. | MR | Zbl
,[18] Energy decay for a weak solution of the Navier-Stokes equation with slowly varying external forces, J. Funct. Anal. 144 (2) (1997) 325-358. | MR | Zbl
, , ,[19] Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova 32 (1962) 374-397. | Numdam | MR | Zbl
,[20] The Fourier splitting method, in: Advances in Geometric Analysis and Continuum Mechanics, Stanford, CA, 1993, Internat. Press, Cambridge, MA, 1995, pp. 269-274. | MR | Zbl
,[21] Decay of solutions to parabolic conservation laws, Comm. Partial Differential Equations 5 (5) (1980) 449-473. | MR | Zbl
,[22] Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations, Comm. Partial Differential Equations 7 (1) (1980) 449-473. | Zbl
,[23] decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 88 (3) (1985) 209-222. | MR | Zbl
,[24] Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations 11 (7) (1986) 733-763. | MR | Zbl
,[25] Large time behaviour of solutions to the Navier-Stokes equations in spaces, Comm. Partial Differential Equations 20 (1-2) (1995) 103-117. | Zbl
,[26] Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst. 13 (5) (2005) 1277-1304. | Zbl
, ,[27] On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 126 (3) (1996) 677-685. | Zbl
, ,[28] Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1984 edition. | Zbl
,[29] Decay results for weak solutions of the Navier-Stokes equations on , J. London Math. Soc. (2) 35 (2) (1987) 303-313. | Zbl
,[30] Higher order estimates in further dimensions for the solutions of Navier-Stokes equations, in: Evolution Equations, Warsaw, 2001, Banach Center Publ., vol. 60, Polish Acad. Sci., Warsaw, 2003, pp. 81-84. | MR | Zbl
,[31] Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations, Comm. Partial Differential Equations 20 (1-2) (1995) 119-127. | MR | Zbl
,Cité par Sources :