@article{AIHPC_2008__25_4_679_0, author = {Kotschote, Matthias}, title = {Strong solutions for a compressible fluid model of {Korteweg} type}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {679--696}, publisher = {Elsevier}, volume = {25}, number = {4}, year = {2008}, doi = {10.1016/j.anihpc.2007.03.005}, mrnumber = {2436788}, zbl = {1141.76053}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.03.005/} }
TY - JOUR AU - Kotschote, Matthias TI - Strong solutions for a compressible fluid model of Korteweg type JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 679 EP - 696 VL - 25 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.03.005/ DO - 10.1016/j.anihpc.2007.03.005 LA - en ID - AIHPC_2008__25_4_679_0 ER -
%0 Journal Article %A Kotschote, Matthias %T Strong solutions for a compressible fluid model of Korteweg type %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 679-696 %V 25 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.03.005/ %R 10.1016/j.anihpc.2007.03.005 %G en %F AIHPC_2008__25_4_679_0
Kotschote, Matthias. Strong solutions for a compressible fluid model of Korteweg type. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 4, pp. 679-696. doi : 10.1016/j.anihpc.2007.03.005. http://www.numdam.org/articles/10.1016/j.anihpc.2007.03.005/
[1] Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. 186 (1997) 5-56. | MR | Zbl
,[2] Diffuse-interface methods in fluid mech, Ann. Rev. Fluid Mech. 30 (1998) 139-165. | MR
, , ,[3] On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations 28 (3-4) (2003) 843-868. | MR | Zbl
, , ,[4] Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys. 28 (1998) 258-267.
, ,[5] Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (1) (2001) 97-133. | EuDML | Numdam | MR | Zbl
, ,[6] -boundedness and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (788) (2003), viii+114 pp. | MR | Zbl
, , ,[7] On the closedness of the sum of two closed operators, Math. Z. 196 (1987) 189-201. | EuDML | MR | Zbl
, ,[8] On the thermomechanics of interstitial working, Arch. Rational Mech. Anal. 88 (2) (1985) 95-133. | MR | Zbl
, ,[9] A new approach to the regularity of solutions for parabolic equations, in: Evolution Equations, Lecture Notes in Pure and Appl. Math., vol. 234, Dekker, New York, 2003, pp. 167-190. | MR | Zbl
, , ,[10] Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci. 6 (6) (1996) 815-831. | MR | Zbl
, , ,[11] The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations 9 (4) (1996) 323-342. | MR | Zbl
, ,[12] Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl. 198 (1) (1996) 84-97. | MR | Zbl
, ,[13] The -calculus and sums of closed operators, Math. Ann. 321 (2) (2001) 319-345. | MR | Zbl
, ,[14] M. Kotschote, Strong well-posedness of a model for an ionic exchange process, Thesis, Martin-Luther-Universität Halle-Wittenberg, 2003.
[15] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Amer. Math. Soc., Providence, RI, 1968.
, , ,[16] A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc. 77 (1998) 387-414. | MR | Zbl
, , ,[17] Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in -spaces, Math. Bohem. 127 (2) (2002) 311-327. | EuDML | MR | Zbl
,[18] On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990) 429-452. | EuDML | MR | Zbl
, ,[19] Coerciveness inequalities for abstract parabolic equations, Soviet Math. (Doklady) 5 (1964) 894-897. | MR | Zbl
,[20] Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978. | MR | Zbl
,[21] Theory of Function Spaces, Geest & Portig K.-G., Leipzig, 1983. | MR | Zbl
,[22] Maximal regularity of type for abstract parabolic Volterra equations, J. Evol. Equ. 5 (1) (2005) 79-103. | MR | Zbl
,[23] R. Zacher, Quasilinear parabolic integro-differential equations with nonlinear boundary conditions, preprint. | MR | Zbl
Cité par Sources :