A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary
Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 4, pp. 633-658.
@article{AIHPC_2008__25_4_633_0,
     author = {Teixeira, Eduardo V.},
     title = {A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {633--658},
     publisher = {Elsevier},
     volume = {25},
     number = {4},
     year = {2008},
     doi = {10.1016/j.anihpc.2007.02.006},
     mrnumber = {2436786},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.006/}
}
TY  - JOUR
AU  - Teixeira, Eduardo V.
TI  - A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2008
SP  - 633
EP  - 658
VL  - 25
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.006/
DO  - 10.1016/j.anihpc.2007.02.006
LA  - en
ID  - AIHPC_2008__25_4_633_0
ER  - 
%0 Journal Article
%A Teixeira, Eduardo V.
%T A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary
%J Annales de l'I.H.P. Analyse non linéaire
%D 2008
%P 633-658
%V 25
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.006/
%R 10.1016/j.anihpc.2007.02.006
%G en
%F AIHPC_2008__25_4_633_0
Teixeira, Eduardo V. A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 4, pp. 633-658. doi : 10.1016/j.anihpc.2007.02.006. http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.006/

[1] Alt H., Caffarelli L., Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981) 105-144. | MR | Zbl

[2] Berestycki H., Caffarelli L.A., Nirenberg L., Uniform estimates for regularization of free boundary problems, in: Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 567-619. | MR | Zbl

[3] Berestycki H., Nirenberg L., Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys. 5 (2) (1988) 237-275. | MR | Zbl

[4] Berestycki H., Nirenberg L., Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, in: Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 115-164. | MR | Zbl

[5] Berestycki H., Nirenberg L., Travelling front solutions of semilinear equations in n dimensions, in: Frontiers in Pure and Applied Mathematics, North-Holland, Amsterdam, 1991, pp. 31-41. | MR | Zbl

[6] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.) 22 (1) (1991) 1-37. | MR | Zbl

[7] Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are C 1,α , Rev. Mat. Iberoamericana 3 (2) (1987) 139-162. | MR | Zbl

[8] Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math. 42 (1) (1989) 55-78. | MR | Zbl

[9] Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on X, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (4) (1988) 583-602, (1989). | Numdam | MR | Zbl

[10] Caffarelli L.A., Jerison D., Kenig C.E., Some new monotonicity theorems with applications to free boundary problems, Ann. of Math. (2) 155 (2) (2002) 369-404. | MR | Zbl

[11] Caffarelli L.A., Lederman C., Wolanski N., Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem, Indiana Univ. Math. J. 46 (3) (1997) 719-740. | MR | Zbl

[12] Cerutti M.C., Ferrari F., Salsa S., Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are C 1,γ , Arch. Ration. Mech. Anal. 171 (2004) 329-348. | MR | Zbl

[13] Ferrari F., Salsa S., Regularity of the free boundary in two-phase problems for linear elliptic operators, Adv. Math. 214 (1) (2007) 288-322. | MR

[14] Fife P.C., Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath., vol. 28, Springer-Verlag, New York, 1979. | MR | Zbl

[15] Giaquinta M., Giusti E., Quasi-Minima, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 79-107. | Numdam | MR | Zbl

[16] Han Q., Lin F., Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997. | MR | Zbl

[17] Lederman C., Wolanski N., Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (2) (1998) 253-288, (1999). | Numdam | MR | Zbl

[18] Moreira D., Teixeira E.V., A singular free boundary problem for elliptic equations in divergence form, Calc. Var. Partial Differential Equations 29 (2) (2007) 161-190. | MR

[19] E.V. Teixeira, Optimal regularity of viscosity solutions of fully nonlinear singular equations and their limiting free boundary problems, Mat. Contemp., submitted for publication. | MR | Zbl

[20] Weiss G.S., Partial regularity for a minimum problem with free boundary, J. Geom. Anal. 9 (2) (1999) 317-326. | MR | Zbl

Cité par Sources :