@article{AIHPC_2008__25_3_505_0, author = {Pucci, Patrizia and Servadei, Raffaella}, title = {Existence, non-existence and regularity of radial ground states for $p$-laplacian equations with singular weights}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {505--537}, publisher = {Elsevier}, volume = {25}, number = {3}, year = {2008}, doi = {10.1016/j.anihpc.2007.02.004}, zbl = {1147.35045}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.004/} }
TY - JOUR AU - Pucci, Patrizia AU - Servadei, Raffaella TI - Existence, non-existence and regularity of radial ground states for $p$-laplacian equations with singular weights JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 505 EP - 537 VL - 25 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.004/ DO - 10.1016/j.anihpc.2007.02.004 LA - en ID - AIHPC_2008__25_3_505_0 ER -
%0 Journal Article %A Pucci, Patrizia %A Servadei, Raffaella %T Existence, non-existence and regularity of radial ground states for $p$-laplacian equations with singular weights %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 505-537 %V 25 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.004/ %R 10.1016/j.anihpc.2007.02.004 %G en %F AIHPC_2008__25_3_505_0
Pucci, Patrizia; Servadei, Raffaella. Existence, non-existence and regularity of radial ground states for $p$-laplacian equations with singular weights. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 3, pp. 505-537. doi : 10.1016/j.anihpc.2007.02.004. http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.004/
[1] Existence and non-existence results for quasilinear elliptic equations involving the p-Laplacian, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 9 (2) (2006) 445-484. | MR | Zbl
, , ,[2] An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc. 130 (2) (2001) 489-505. | MR | Zbl
, , ,[3] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. | MR | Zbl
, ,[4] Nonlinear scalar field equations, I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983) 313-345. | MR | Zbl
, ,[5] Nonlinear scalar field equations, II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82 (1983) 347-375. | MR | Zbl
, ,[6] Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., Theory Methods Appl. 19 (6) (1992) 581-597. | MR | Zbl
, ,[7] Analyse Fonctionelle. Théorie et applications, Masson, Paris, 1983. | MR | Zbl
,[8] A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (3) (1983) 486-490. | MR | Zbl
, ,[9] First order inequalities with weights, Compos. Math. 53 (1984) 259-275. | Numdam | MR | Zbl
, , ,[10] Singular elliptic problems with critical growth, Commun. Partial Differential Equations 27 (2002) 847-876. | MR | Zbl
, ,[11] Existence of radial solutions for the p-Laplacian elliptic equations with weights, Discrete Contin. Dyn. Syst. 15 (2) (2006) 447-479. | MR | Zbl
, , ,[12] Existence of positive solutions of some semilinear elliptic equations with singular coefficients, Proc. R. Soc. Edinburgh Sect. A Math. 131 (6) (2001) 1275-1295. | MR | Zbl
, ,[13] Positive solutions for a quasilinear elliptic equation in , Rend. Circ. Mat. Palermo, II. Ser. 35 (1986) 364-375. | MR | Zbl
,[14] Some existence and non-existence results for a homogeneous quasilinear problem, Asymptotic Anal. 17 (1998) 13-29. | MR | Zbl
, , ,[15] Action minima among solutions to a class of euclidean scalar field equations, Comm. Math. Phys. 58 (1978) 211-221. | MR
, , ,[16] -local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Theory Methods Appl. 7 (8) (1983) 827-850. | MR | Zbl
,[17] Selected new aspects of the calculus of variations in the large, Bull. Am. Math. Soc. (N.S) 39 (2) (2002) 207-265. | MR | Zbl
, ,[18] Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations 177 (2001) 494-522. | MR | Zbl
, ,[19] On subcriticality assumptions for the existence of ground states of quasilinear elliptic equations, Adv. Differential Equations 8 (2003) 1081-1106. | MR
, ,[20] Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998) 441-476. | MR | Zbl
, ,[21] On the structure of positive radial solutions to an equation containing a p-Laplacian with weight, J. Differential Equations 223 (2006) 51-95. | MR | Zbl
, , ,[22] Existence of ground states and free boundary problems for quasilinear elliptic operators, Adv. Differential Equations 5 (1-3) (2000) 1-30. | MR | Zbl
, , ,[23] N. Ghoussoub, F. Robert, Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth, IMRP Int. Math. Res. Pap. (2006), 21867, 1-85. | MR | Zbl
[24] Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (12) (2000) 5703-5743. | MR | Zbl
, ,[25] Positive solutions for a class of quasilinear singular equations, Electron. J. Differential Equations 2004 (56) (2004) 1-15. | MR | Zbl
, ,[26] Real and Abstract Analysis, Springer-Verlag, Berlin, 1965. | MR | Zbl
, ,[27] E. Jannelli, S. Solimini, Critical behaviour of some elliptic equations with singular potentials, Rapporto n. 41, Università degli Studi di Bari, 1996.
[28] Introdution à la théorie des points critiques, Springer-Verlag, Paris, 1983.
,[29] Weighted Inequalities of Hardy-Type, Word Scientific, 2003. | MR | Zbl
, ,[30] Introduction to Functional Analysis, John Wiley and Sons, New York, 1980. | MR | Zbl
, ,[31] Equation with critical Sobolev-Hardy exponents, Int. J. Math. Math. Sci. 20 (2005) 3213-3223. | MR | Zbl
,[32] Analysis, Graduate Studies in Math., vol. 14, second ed., Amer. Math. Soc., 1997. | MR | Zbl
, ,[33] The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana 1 (1985) 145-201. | MR | Zbl
,[34] A simple approach to Hardy inequalities, Mat. Zametki 67 (2000) 563-572, (in Russian); translation in, Math. Notes 67 (2000) 479-486. | MR | Zbl
,[35] Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2) 8 (Centenary Supplement) (1985) 171-185. | Zbl
, ,[36] Qualitative properties of ground states for singular elliptic equations with weights, Ann. Mat. Pura Appl. (4) 185 (2006) 205-243. | MR | Zbl
, , , ,[37] Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J. 47 (1998) 501-528. | MR | Zbl
, ,[38] P. Pucci, J. Serrin, The Strong Maximum Principle, Progress in Nonlinear Differential Equations, Birkhäuser Publ., Switzerland, monograph book, pp. 206, in press. | MR | Zbl
[39] A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl. (9) 78 (1999) 769-789. | MR | Zbl
, , ,[40] On weak solutions for p-Laplacian equations with weights, Rend. Lincei Mat. Appl. 18 (2007) 257-267. | MR
, ,[41] P. Pucci, R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations, submitted for publication. | Zbl
[42] Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations 190 (2003) 524-538. | MR | Zbl
, ,[43] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162. | MR | Zbl
,[44] Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, third ed., Springer-Verlag, Berlin, 2000. | MR | Zbl
,[45] Critical p-Laplacian problems in , Ann. Mat. Pura Appl. (4) 169 (1995) 233-250. | MR | Zbl
, ,[46] Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353-372. | MR | Zbl
,[47] On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations 1 (2) (1996) 241-264. | MR | Zbl
,[48] A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optimization 12 (1984) 191-202. | MR | Zbl
,[49] Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser, Boston, 1996. | MR | Zbl
,[50] The solvability of quasilinear Brézis-Nirenberg-type problems wit singular weights, Nonlinear Anal., Theory Methods Appl. 62 (2005) 703-725. | MR | Zbl
,Cité par Sources :