Global existence of small classical solutions to nonlinear Schrödinger equations
Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 303-311.
@article{AIHPC_2008__25_2_303_0,
     author = {Ozawa, Tohru and Zhai, Jian},
     title = {Global existence of small classical solutions to nonlinear {Schr\"odinger} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {303--311},
     publisher = {Elsevier},
     volume = {25},
     number = {2},
     year = {2008},
     doi = {10.1016/j.anihpc.2006.11.010},
     mrnumber = {2396524},
     zbl = {1143.35370},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.010/}
}
TY  - JOUR
AU  - Ozawa, Tohru
AU  - Zhai, Jian
TI  - Global existence of small classical solutions to nonlinear Schrödinger equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2008
SP  - 303
EP  - 311
VL  - 25
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.010/
DO  - 10.1016/j.anihpc.2006.11.010
LA  - en
ID  - AIHPC_2008__25_2_303_0
ER  - 
%0 Journal Article
%A Ozawa, Tohru
%A Zhai, Jian
%T Global existence of small classical solutions to nonlinear Schrödinger equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2008
%P 303-311
%V 25
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.010/
%R 10.1016/j.anihpc.2006.11.010
%G en
%F AIHPC_2008__25_2_303_0
Ozawa, Tohru; Zhai, Jian. Global existence of small classical solutions to nonlinear Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 303-311. doi : 10.1016/j.anihpc.2006.11.010. http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.010/

[1] Cazenave T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, 2003. | MR | Zbl

[2] Chang N.-H., Shatah J., Uhlenbeck K., Schrödinger maps, Comm. Pure Appl. Math. 53 (2003) 590-602. | MR | Zbl

[3] Chihara H., Global existence of small solutions to semilinear Schrödinger equations with gauge invariance, Publ. RIMS 31 (5) (1995) 731-753. | MR | Zbl

[4] Chihara H., The initial value problem for cubic semilinear Schrödinger equations, Publ. RIMS 32 (3) (1996) 445-471. | MR | Zbl

[5] Ginibre J., Introduction aux équations de Schrödinger non linéaires, Paris Onze Edition, Université Paris-Sud, 1998, L161.

[6] Hayashi N., Hirata H., Local existence in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc. 40 (1997) 563-581. | MR | Zbl

[7] Hayashi N., Kaikina E.I., Local existence of solutions to the Cauchy problem for nonlinear Schrödinger equations, SUT J. Math. 34 (1998) 111-137. | MR | Zbl

[8] Hayashi N., Miao C., Naumkin P.I., Global existence of small solutions to the generalized derivative nonlinear Schrödinger equations, Asymptotic Anal. 21 (1999) 133-147. | MR | Zbl

[9] Hayashi N., Ozawa T., Remarks on nonlinear Schrödinger equations in one space dimension, Differential Integral Equations 7 (1994) 453-461. | MR | Zbl

[10] Hayashi N., Ozawa T., Global, small radially symmetric solutions to nonlinear Schrödinger equations and a gauge transformation, Differential Integral Equations 8 (1995) 1061-1072. | MR | Zbl

[11] Kato J., Existence and uniqueness of the solution to the modified Schrödinger map, Math. Res. Lett. 12 (2-3) (2005) 171-186. | MR | Zbl

[12] Kato T., Nonlinear Schrödinger equations, in: Holden H., Jensen A. (Eds.), Schrödinger Operators, Lecture Notes in Physics, vol. 345, Springer-Verlag, Berlin, 1989, pp. 218-263. | MR | Zbl

[13] Kato T., Ponce G., Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988) 891-907. | MR | Zbl

[14] Keel M., Tao T., Small data blow-up for semilinear Klein-Gordon equations, Amer. J. Math. 121 (3) (1999) 629-669. | MR | Zbl

[15] Kenig C., Pollack D., Staffilani G., Toro T., The Cauchy problem for Schrödinger flows into Kähler manifolds, arXiv:, math.AP/0511701 v1.

[16] Kenig C., Ponce G., Vega L., Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (3) (1993) 255-288. | Numdam | MR | Zbl

[17] Kenig C., Ponce G., Vega L., Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math. 134 (3) (1998) 489-545. | MR | Zbl

[18] Klainerman S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal. 78 (1) (1982) 73-98. | MR | Zbl

[19] Klainerman S., Weighted L and L 1 estimates for solutions to the classical wave equation in three space dimensions, Comm. Pure Appl. Math. 37 (2) (1984) 269-288. | MR | Zbl

[20] Klainerman S., Ponce G., Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36 (1) (1983) 133-141. | MR | Zbl

[21] Lindblad H., Sogge C., On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (2) (1995) 357-426. | MR | Zbl

[22] Machihara S., Nakanishi K., Ozawa T., Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Math. Ann. 322 (3) (2002) 603-621. | MR | Zbl

[23] Machihara S., Nakanishi K., Ozawa T., Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana 19 (1) (2003) 179-194. | MR | Zbl

[24] Nahmod A., Stefanov A., Uhlenbeck K., On Schrödinger maps, Comm. Pure Appl. Math. 56 (1) (2003) 114-151. | MR | Zbl

[25] Nakamura M., Ozawa T., Small data scattering for nonlinear Schrödinger, wave and Klein-Gordon equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002) 435-460. | Numdam | MR | Zbl

[26] Ozawa T., Finite energy solutions for the Schrödinger equations with quadratic nonlinearity in one space dimension, Funkcial. Ekvac. 41 (3) (1998) 451-468. | MR | Zbl

[27] Ozawa T., Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac. 38 (2) (1995) 217-232. | MR | Zbl

[28] Shatah J., Global existence of small solutions to nonlinear evolution equations, J. Differential Equations 46 (3) (1982) 409-425. | MR | Zbl

[29] Shatah J., Zeng C., Schrödinger maps and anti-ferromagnetic chains, Comm. Math. Phys. 262 (2) (2006) 299-315. | MR | Zbl

[30] Soyeur A., The Cauchy problem for the Ishimori equations, J. Funct. Anal. 105 (2) (1992) 233-255. | MR | Zbl

[31] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. | MR | Zbl

[32] Tonegawa S., Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension, Hokkaido Math. J. 30 (2) (2001) 451-473. | MR | Zbl

Cité par Sources :