Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 215-218.
@article{AIHPC_2008__25_2_215_0,
     author = {Jazar, M. and Kiwan, R.},
     title = {Blow-up of a non-local semilinear parabolic equation with {Neumann} boundary conditions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {215--218},
     publisher = {Elsevier},
     volume = {25},
     number = {2},
     year = {2008},
     doi = {10.1016/j.anihpc.2006.12.002},
     mrnumber = {2396519},
     zbl = {1148.35040},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2006.12.002/}
}
TY  - JOUR
AU  - Jazar, M.
AU  - Kiwan, R.
TI  - Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2008
SP  - 215
EP  - 218
VL  - 25
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2006.12.002/
DO  - 10.1016/j.anihpc.2006.12.002
LA  - en
ID  - AIHPC_2008__25_2_215_0
ER  - 
%0 Journal Article
%A Jazar, M.
%A Kiwan, R.
%T Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2008
%P 215-218
%V 25
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2006.12.002/
%R 10.1016/j.anihpc.2006.12.002
%G en
%F AIHPC_2008__25_2_215_0
Jazar, M.; Kiwan, R. Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 215-218. doi : 10.1016/j.anihpc.2006.12.002. https://www.numdam.org/articles/10.1016/j.anihpc.2006.12.002/

[1] El Soufi A., Jazar M., Monneau R., A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17-39. | Numdam | MR | Zbl

  • Zhao, Yaxin; Wu, Xiulan Asymptotic behavior and blow-up of solutions for a nonlocal parabolic equation with a special diffusion process, AIMS Mathematics, Volume 9 (2024) no. 8, p. 22883 | DOI:10.3934/math.20241113
  • Chen, Na; Li, Fushan; Wang, Peihe Global existence and blow-up phenomenon for a nonlocal semilinear pseudo-parabolic p-Laplacian equation, Journal of Differential Equations, Volume 409 (2024), p. 395 | DOI:10.1016/j.jde.2024.07.008
  • Kavallaris, Nikos I.; Latos, Evangelos; Suzuki, Takashi Diffusion-Driven Blow-Up for a Nonlocal Fisher-KPP Type Model, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 3, p. 2411 | DOI:10.1137/21m145519x
  • Sert, Uğur; Shmarev, Sergey On a class of nonlocal parabolic equations of Kirchhoff type: Nonexistence of global solutions and blow‐up, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 14, p. 8674 | DOI:10.1002/mma.7525
  • Cao, Yang; Zhao, Qiuting Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations, Electronic Research Archive, Volume 29 (2021) no. 6, p. 3833 | DOI:10.3934/era.2021064
  • Wang, Xingchang; Xu, Runzhang Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Advances in Nonlinear Analysis, Volume 10 (2020) no. 1, p. 261 | DOI:10.1515/anona-2020-0141
  • Di, Huafei; Shang, Yadong Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration, Journal of Differential Equations, Volume 269 (2020) no. 5, p. 4566 | DOI:10.1016/j.jde.2020.03.030
  • Zheng, Yadong; Fang, Zhong Bo Qualitative properties for a pseudo-parabolic equation with nonlocal reaction term, Boundary Value Problems, Volume 2019 (2019) no. 1 | DOI:10.1186/s13661-019-1246-5
  • Xu, Guangyu; Zhou, Jun Global existence and blow-up of solutions to a class of nonlocal parabolic equations, Computers Mathematics with Applications, Volume 78 (2019) no. 3, p. 979 | DOI:10.1016/j.camwa.2019.03.018
  • Zhou, Jun Ground state solution for a fourth-order elliptic equation with logarithmic nonlinearity modeling epitaxial growth, Computers Mathematics with Applications, Volume 78 (2019) no. 6, p. 1878 | DOI:10.1016/j.camwa.2019.03.025
  • Han, Yuzhu A class of fast diffusion p-Laplace equation with arbitrarily high initial energy, Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, p. 1153 | DOI:10.1016/j.crme.2018.06.013
  • Xu, Guangyu; Zhou, Jun Global existence and finite time blow-up of the solution for a thin-film equation with high initial energy, Journal of Mathematical Analysis and Applications, Volume 458 (2018) no. 1, p. 521 | DOI:10.1016/j.jmaa.2017.09.031
  • Feng, Min; Zhou, Jun Global existence and blow-up of solutions to a nonlocal parabolic equation with singular potential, Journal of Mathematical Analysis and Applications, Volume 464 (2018) no. 2, p. 1213 | DOI:10.1016/j.jmaa.2018.04.056
  • Zhou, Jun Global asymptotical behavior and some new blow-up conditions of solutions to a thin-film equation, Journal of Mathematical Analysis and Applications, Volume 464 (2018) no. 2, p. 1290 | DOI:10.1016/j.jmaa.2018.04.058
  • Wang, Heng-Ling; Tao, Wei-Run; Wang, Xiao-Liu Finite-time blow-up and global convergence of solutions to a nonlocal parabolic equation with conserved spatial integral, Nonlinear Analysis: Real World Applications, Volume 40 (2018), p. 55 | DOI:10.1016/j.nonrwa.2017.08.015
  • Hao, Aijing; Zhou, Jun Blowup, extinction and non-extinction for a nonlocal p-biharmonic parabolic equation, Applied Mathematics Letters, Volume 64 (2017), p. 198 | DOI:10.1016/j.aml.2016.09.007
  • ROTTSCHÄFER, V.; TZOU, J. C.; WARD, M.J. Transition to blow-up in a reaction–diffusion model with localized spike solutions, European Journal of Applied Mathematics, Volume 28 (2017) no. 6, p. 1015 | DOI:10.1017/s0956792517000043
  • Zhou, Jun Blow-up for a thin-film equation with positive initial energy, Journal of Mathematical Analysis and Applications, Volume 446 (2017) no. 1, p. 1133 | DOI:10.1016/j.jmaa.2016.09.026
  • Dong, Zhihua; Zhou, Jun Global existence and finite time blow-up for a class of thin-film equation, Zeitschrift für angewandte Mathematik und Physik, Volume 68 (2017) no. 4 | DOI:10.1007/s00033-017-0835-3
  • Ding, Juntang Blow-up and global existence for nonlinear reaction-diffusion equations under Neumann boundary conditions, Journal of Inequalities and Applications, Volume 2016 (2016) no. 1 | DOI:10.1186/s13660-016-1029-9
  • Qu, Chengyuan; Zhou, Wenshu Blow-up and extinction for a thin-film equation with initial-boundary value conditions, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 2, p. 796 | DOI:10.1016/j.jmaa.2015.11.075
  • Wang, Xiao-Liu; Tian, Fang-Zheng; Li, Gen Nonlocal parabolic equation with conserved spatial integral, Archiv der Mathematik, Volume 105 (2015) no. 1, p. 93 | DOI:10.1007/s00013-015-0782-1
  • Khelghati, Ali; Baghaei, Khadijeh Blow-up phenomena for a nonlocal semilinear parabolic equation with positive initial energy, Computers Mathematics with Applications, Volume 70 (2015) no. 5, p. 896 | DOI:10.1016/j.camwa.2015.06.003
  • Ding, Juntang Global existence and blow-up for a class of nonlinear reaction diffusion problems, Boundary Value Problems, Volume 2014 (2014) no. 1 | DOI:10.1186/s13661-014-0168-5
  • Qu, Chengyuan; Bai, Xueli; Zheng, Sining Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions, Journal of Mathematical Analysis and Applications, Volume 412 (2014) no. 1, p. 326 | DOI:10.1016/j.jmaa.2013.10.040
  • Qu, Chengyuan; Liang, Bo Blow-Up in a Slow Diffusive -Laplace Equation with the Neumann Boundary Conditions, Abstract and Applied Analysis, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/643819
  • Fang, Zhong Bo; Sun, Lu; Li, Changjun A note on blow-up of solutions for the nonlocal quasilinear parabolic equation with positive initial energy, Boundary Value Problems, Volume 2013 (2013) no. 1 | DOI:10.1186/1687-2770-2013-181
  • Vitillaro, Enzo; Fiscella, Alessio Local Hadamard well–posedness and blow–up for reaction–diffusion equations with non–linear dynamical boundary conditions, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 11/12, p. 5015 | DOI:10.3934/dcds.2013.33.5015
  • Amorim, Paulo; Antontsev, Stanislav Young measure solutions for the wave equation withp(x,t)-Laplacian: Existence and blow-up, Nonlinear Analysis: Theory, Methods Applications, Volume 92 (2013), p. 153 | DOI:10.1016/j.na.2013.07.010
  • Antontsev, S.; Ferreira, J. Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Analysis: Theory, Methods Applications, Volume 93 (2013), p. 62 | DOI:10.1016/j.na.2013.07.019
  • Liu, Dengming; Mu, Chunlai; Ahmed, Iftikhar BLOW-UP FOR A SEMILINEAR PARABOLIC EQUATION WITH NONLINEAR MEMORY AND NONLOCAL NONLINEAR BOUNDARY, Taiwanese Journal of Mathematics, Volume 17 (2013) no. 4 | DOI:10.11650/tjm.17.2013.2648
  • Niculescu, Constantin P.; Rovenţa, Ionel Generalized convexity and the existence of finite time blow-up solutions for an evolutionary problem, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 1, p. 270 | DOI:10.1016/j.na.2011.08.031
  • Zhao, Leina Blow-Up for a Class of Parabolic Equations with Nonlinear Boundary Conditions, Advances in Neural Networks – ISNN 2011, Volume 6675 (2011), p. 222 | DOI:10.1007/978-3-642-21105-8_27
  • Gao, Wenjie; Han, Yuzhu Blow-up of a nonlocal semilinear parabolic equation with positive initial energy, Applied Mathematics Letters, Volume 24 (2011) no. 5, p. 784 | DOI:10.1016/j.aml.2010.12.040
  • Han, Yuzhu; Gao, Wenjie A degenerate parabolic equation with a nonlocal source and an absorption term, Applicable Analysis, Volume 89 (2010) no. 12, p. 1917 | DOI:10.1080/00036811.2010.505190
  • Ding, Juntang; Guo, Bao-Zhu Blow-up and global existence for nonlinear parabolic equations with Neumann boundary conditions, Computers Mathematics with Applications, Volume 60 (2010) no. 3, p. 670 | DOI:10.1016/j.camwa.2010.05.015
  • Niculescu, Constantin P.; Rovenţa, Ionel; Zhou, Yong Large Solutions for Semilinear Parabolic Equations Involving Some Special Classes of Nonlinearities, Discrete Dynamics in Nature and Society, Volume 2010 (2010) no. 1 | DOI:10.1155/2010/491023
  • Mu, Chunlai; Liu, Dengming; Zhou, Shouming PROPERTIES OF POSITIVE SOLUTIONS FOR A NONLOCAL REACTION-DIFFUSION EQUATION WITH NONLOCAL NONLINEAR BOUNDARY CONDITION, Journal of the Korean Mathematical Society, Volume 47 (2010) no. 6, p. 1317 | DOI:10.4134/jkms.2010.47.6.1317

Cité par 38 documents. Sources : Crossref