@article{AIHPC_2008__25_1_163_0, author = {Dacorogna, Bernard and Marcellini, Paolo and Paolini, Emanuele}, title = {An explicit solution to a system of implicit differential equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {163--171}, publisher = {Elsevier}, volume = {25}, number = {1}, year = {2008}, doi = {10.1016/j.anihpc.2006.11.007}, mrnumber = {2383084}, zbl = {1141.35014}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.007/} }
TY - JOUR AU - Dacorogna, Bernard AU - Marcellini, Paolo AU - Paolini, Emanuele TI - An explicit solution to a system of implicit differential equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 163 EP - 171 VL - 25 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.007/ DO - 10.1016/j.anihpc.2006.11.007 LA - en ID - AIHPC_2008__25_1_163_0 ER -
%0 Journal Article %A Dacorogna, Bernard %A Marcellini, Paolo %A Paolini, Emanuele %T An explicit solution to a system of implicit differential equations %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 163-171 %V 25 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.007/ %R 10.1016/j.anihpc.2006.11.007 %G en %F AIHPC_2008__25_1_163_0
Dacorogna, Bernard; Marcellini, Paolo; Paolini, Emanuele. An explicit solution to a system of implicit differential equations. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 1, pp. 163-171. doi : 10.1016/j.anihpc.2006.11.007. http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.007/
[1] Fine phase mixtures as minimizers of energy, Arch. Ration. Mech. Anal. 100 (1987) 15-52. | MR | Zbl
, ,[2] On total differential inclusions, Rend. Sem. Mat. Univ. Padova 92 (1994) 9-16. | Numdam | MR | Zbl
, ,[3] On the differential inclusion , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 69 (1980) 1-6. | MR | Zbl
,[4] On minima of a functional of the gradient: necessary conditions, Nonlinear Anal. 20 (1993) 337-341. | MR | Zbl
,[5] On minima of a functional of the gradient, sufficient conditions, Nonlinear Anal. 20 (1993) 343-347. | MR | Zbl
,[6] On a problem of potential wells, J. Convex Anal. 2 (1995) 103-115. | MR | Zbl
, ,[7] General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case, Acta Math. 178 (1997) 1-37. | MR | Zbl
, ,[8] Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, vol. 37, Birkhäuser, 1999. | MR | Zbl
, ,[9] A general existence theorem for differential inclusions in the vector valued case, Portugal. Math. 62 (2005) 421-436. | MR | Zbl
, ,[10] Non convex valued differential inclusions in Banach spaces, J. Math. Anal. Appl. 157 (1991) 469-494. | MR | Zbl
, ,[11] A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 437-471. | MR | Zbl
,[12] R.D. James, unpublished work.
[13] B. Kirchheim, Rigidity and geometry of microstructures, Preprint Max-Plank-Institut, Leipzig, Lecture Note 16, 2003.
[14] Attainment results for the two-well problem by convex integration, in: (Ed.), Geometric Analysis and the Calculus of Variations, International Press, 1996, pp. 239-251. | MR | Zbl
, ,Cité par Sources :