@article{AIHPC_2007__24_6_875_0, author = {Baraket, Sami and Dammak, Makkia and Ouni, Taieb and Pacard, Frank}, title = {Singular limits for a $4$-dimensional semilinear elliptic problem with exponential nonlinearity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {875--895}, publisher = {Elsevier}, volume = {24}, number = {6}, year = {2007}, doi = {10.1016/j.anihpc.2006.06.009}, mrnumber = {2371110}, zbl = {1132.35038}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.009/} }
TY - JOUR AU - Baraket, Sami AU - Dammak, Makkia AU - Ouni, Taieb AU - Pacard, Frank TI - Singular limits for a $4$-dimensional semilinear elliptic problem with exponential nonlinearity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 875 EP - 895 VL - 24 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.009/ DO - 10.1016/j.anihpc.2006.06.009 LA - en ID - AIHPC_2007__24_6_875_0 ER -
%0 Journal Article %A Baraket, Sami %A Dammak, Makkia %A Ouni, Taieb %A Pacard, Frank %T Singular limits for a $4$-dimensional semilinear elliptic problem with exponential nonlinearity %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 875-895 %V 24 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.009/ %R 10.1016/j.anihpc.2006.06.009 %G en %F AIHPC_2007__24_6_875_0
Baraket, Sami; Dammak, Makkia; Ouni, Taieb; Pacard, Frank. Singular limits for a $4$-dimensional semilinear elliptic problem with exponential nonlinearity. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 6, pp. 875-895. doi : 10.1016/j.anihpc.2006.06.009. http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.009/
[1] Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1998) 1-38. | MR | Zbl
, ,[2] Fourth order equations in conformal geometry, in: Global Analysis and Harmonic Analysis, (Marseille-Luminy, 1999), Smin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 155-165. | MR | Zbl
, ,[3] On a fourth order curvature invariant, in: (Ed.), Spectral Problems in Geometry and Arithmetic, Contemporary Mathematics, vol. 237, Amer. Math. Soc., 1999, pp. 9-28. | MR | Zbl
, ,[4] Singular limits in Liouville type equations, Calc. Var. Partial Differential Equations 24 (1) (2005) 47-81. | MR | Zbl
, , ,[5] On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2) (2005) 227-257. | Numdam | MR | Zbl
, , ,[6] Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes, Comm. Pure Appl. Math. 56 (6) (2003) 784-809. | MR | Zbl
, ,
[7] Sur l’équation aux différences partielles
[8] Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (3) (1985) 409-447. | Numdam | MR | Zbl
, ,[9] Existence of conformal metrics with constant Q-curvature, Preprint, math.AP/0410141, Ann. of Math., submitted for publication.
, ,[10] Elliptic theory of edge operators I, Comm. Partial Differential Equations 16 (10) (1991) 1616-1664. | MR | Zbl
,[11] The Atiyah-Patodi-Singer Index Theorem, Res. Notes in Math., vol. 4, A.K. Peters Ltd., Wellesley, MA, 1993. | Zbl
,[12] Variation d'un point de retournement par rapport au domaine, Comm. Partial Differential Equations 4 (1979) 1263-1297. | MR | Zbl
, , ,[13] Linear and Nonlinear Aspects of Vortices: The Ginzburg Landau Model, Progress in Nonlinear Differential Equations, vol. 39, Birkhäuser, 2000. | MR | Zbl
, ,[14] Two-dimensional Emden-Fowler equation with exponential nonlinearity, in: Nonlinear Diffusion Equations and Their Equilibrium States, vol. 3, Birkhäuser, 1992, pp. 493-512. | Zbl
,[15] G. Tarantello, On Chern-Simons Theory, in: H. Berestycki (Ed.), Nonlinear PDE's and Physical Modeling: Superfluidity, Superconductivity and Reactive Flows, Kluver Academic Publishers, in press. | Zbl
[16] Counterexample to a conjecture of H. Hopf, Pacific J. Math. 121 (1986) 193-243. | MR | Zbl
,[17] On the asymptotic solution of a partial differential equation with exponential nonlinearity, SIAM J. Math. 9 (1978) 1030-1053. | MR | Zbl
,- Blow-up solutions for a 4-dimensional semilinear elliptic system of Liouville type in some general cases, Boundary Value Problems, Volume 2024 (2024), p. 78 (Id/No 21) | DOI:10.1186/s13661-024-01828-4 | Zbl:7880441
- Blow up solutions for 4-dimensional elliptic problems involving exponentially dominated nonlinearities, Annali dell'Università di Ferrara. Sezione VII. Scienze Matematiche, Volume 69 (2023) no. 2, pp. 421-441 | DOI:10.1007/s11565-022-00442-5 | Zbl:1525.35102
- Asymptotic behavior of least energy nodal solutions for biharmonic Lane-Emden problems in dimension four, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 7, p. 32 (Id/No 205) | DOI:10.1007/s00526-023-02545-z | Zbl:1520.35087
- Limiting profile of the blow-up solutions for the fourth-order nonlinear Emden-Fowler equation with a singular source, Discrete and Continuous Dynamical Systems. Series S, Volume 16 (2023) no. 6, pp. 1181-1200 | DOI:10.3934/dcdss.2023077 | Zbl:1519.35104
- On some weighted fourth-order equations, Journal of Differential Equations, Volume 364 (2023), pp. 612-634 | DOI:10.1016/j.jde.2023.03.054 | Zbl:1514.35009
- New explicit and approximate solutions of the Newton-Schrödinger system, Journal of Nonlinear Mathematical Physics, Volume 30 (2023) no. 2, pp. 795-812 | DOI:10.1007/s44198-023-00106-8 | Zbl:1519.65035
- Singular limit solutions for a four-dimensional semilinear elliptic Kuramoto-Sivashinsky system in some general case, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 13, pp. 13922-13990 | DOI:10.1002/mma.9298 | Zbl:1532.35183
- On the blowing up solutions of the 4-d general
-Kuramoto-Sivashinsky equation with exponentially “dominated” nonlinearity and singular weight, Opuscula Mathematica, Volume 43 (2023) no. 1, pp. 5-18 | DOI:10.7494/opmath.2023.43.1.5 | Zbl:1514.35153 - Bubbling solutions of fourth order mean field equations on
, Science China. Mathematics, Volume 66 (2023) no. 6, pp. 1217-1236 | DOI:10.1007/s11425-022-1993-x | Zbl:1518.53038 - Singular limit solutions for a
-dimensional Emden-Fowler system of Liouville type in some general case, Taiwanese Journal of Mathematics, Volume 27 (2023) no. 2, pp. 321-400 | DOI:10.11650/tjm/221202 | Zbl:1518.35314 - Blow up solutions for a 4-dimensional Emden-Fowler system of Liouville type, Journal of Elliptic and Parabolic Equations, Volume 8 (2022) no. 1, pp. 331-366 | DOI:10.1007/s41808-022-00152-1 | Zbl:1490.35066
- Singular limiting radial solutions for 4-dimensional elliptic problem involving exponentially dominated nonlinearity, Mathematical Reports, Volume 25(75) (2022) no. 1, p. 23 | DOI:10.59277/mrar.2023.25.75.1.23
- Blow-up in coupled solutions for a
-dimensional semilinear elliptic Kuramoto-Sivashinsky system, Taiwanese Journal of Mathematics, Volume 26 (2022) no. 6, pp. 1163-1201 | DOI:10.11650/tjm/220601 | Zbl:1505.35166 - Gluing metrics with prescribed
-curvature and different asymptotic behaviour in high dimension, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, Volume 22 (2021) no. 2, pp. 505-547 | DOI:10.2422/2036-2145.201905_001 | Zbl:1479.35467 - Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case, Discrete and Continuous Dynamical Systems, Volume 40 (2020) no. 2, pp. 1013-1063 | DOI:10.3934/dcds.2020069 | Zbl:1433.35071
- Blow-up in coupled solutions for a four dimensional semilinear elliptic system of Liouville type, Graduate Journal of Mathematics, Volume 5 (2020), pp. 1-19 | Zbl:1501.35185
- Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case adding singular sources. II., Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 196 (2020), p. 95 (Id/No 111677) | DOI:10.1016/j.na.2019.111677 | Zbl:1436.35182
- Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case adding singular sources. I, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 196 (2020), p. 51 (Id/No 111799) | DOI:10.1016/j.na.2020.111799 | Zbl:1436.35148
- Singular limit solutions for a 4-dimensional semilinear elliptic system of Liouville type, Taiwanese Journal of Mathematics, Volume 24 (2020) no. 4, pp. 855-909 | DOI:10.11650/tjm/191201 | Zbl:1465.35190
- Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms, Boundary Value Problems, Volume 2019 (2019), p. 25 (Id/No 131) | DOI:10.1186/s13661-019-1244-7 | Zbl:1524.35219
- Singular limit solutions for 2-dimensional elliptic system with sub-quadrtatic convection term, Acta Mathematica Scientia. Series B. (English Edition), Volume 38 (2018) no. 4, pp. 1174-1194 | DOI:10.1016/s0252-9602(18)30807-5 | Zbl:1438.35183
- Blow-up solution for 4-dimensional generalized Emden-Fowler equation with exponential nonlinearity, Taiwanese Journal of Mathematics, Volume 22 (2018) no. 1, pp. 125-155 | DOI:10.11650/tjm/170804 | Zbl:1402.35116
- Singular Limits for 4-Dimensional General Stationary Q-Kuramoto-Sivashinsky Equation (Q-Kse) with Exponential Nonlinearity, Analele Universitatii "Ovidius" Constanta - Seria Matematica, Volume 24 (2016) no. 3, p. 295 | DOI:10.1515/auom-2016-0060
- Singular limits in higher order Liouville-type equations, NoDEA. Nonlinear Differential Equations and Applications, Volume 22 (2015) no. 6, pp. 1545-1571 | DOI:10.1007/s00030-015-0335-0 | Zbl:1328.35038
- Nonexistence of Multi-bubble Solutions for a Higher Order Mean Field Equation on Convex Domains, Geometric Properties for Parabolic and Elliptic PDE's, Volume 2 (2013), p. 283 | DOI:10.1007/978-88-470-2841-8_18
- Singular limits solution for two-dimensional elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 191 (2012) no. 4, pp. 845-869 | DOI:10.1007/s10231-012-0281-y | Zbl:1262.35087
- Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term, Boundary Value Problems, Volume 2011 (2011) no. 1 | DOI:10.1186/1687-2770-2011-10
- Singular limits for 2-dimensional elliptic problem with exponentially dominated nonlinearity and singular data, Communications in Contemporary Mathematics, Volume 13 (2011) no. 4, pp. 697-725 | DOI:10.1142/s0219199711004282 | Zbl:1231.35075
- Asymptotic behavior of solutions of a biharmonic Dirichlet problem with large exponents, Journal d'Analyse Mathématique, Volume 115 (2011), pp. 1-31 | DOI:10.1007/s11854-011-0021-z | Zbl:1314.35059
- Topological degree for solutions of fourth order mean field equations, Mathematische Zeitschrift, Volume 268 (2011) no. 3-4, pp. 675-705 | DOI:10.1007/s00209-010-0690-9 | Zbl:1229.35059
- Singular limits for 2-dimensional elliptic problem involving exponential nonlinearity with nonlinear gradient term, NoDEA. Nonlinear Differential Equations and Applications, Volume 18 (2011) no. 1, pp. 59-78 | DOI:10.1007/s00030-010-0084-z | Zbl:1209.35039
- Existence and multiplicity results for a fourth order mean field equation, Journal of Functional Analysis, Volume 258 (2010) no. 9, pp. 3165-3194 | DOI:10.1016/j.jfa.2010.01.009 | Zbl:1190.35113
- Singular limits for the bi-Laplacian operator with exponential nonlinearity in
, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 25 (2008) no. 5, pp. 1015-1041 | DOI:10.1016/j.anihpc.2007.09.002 | Zbl:1155.35041 - Singular limits for 4-dimensional semilinear elliptic problems with exponential nonlinearity adding a singular source term given by Dirac masses., Differential and Integral Equations, Volume 21 (2008) no. 11-12, pp. 101-1036 | Zbl:1224.35132
- Construction of singular limits for four-dimensional elliptic problems with exponentially dominated nonlinearity, Bulletin des Sciences Mathématiques, Volume 131 (2007) no. 7, pp. 670-685 | DOI:10.1016/j.bulsci.2006.11.002 | Zbl:1126.35023
Cité par 35 documents. Sources : Crossref, zbMATH