@article{AIHPC_2007__24_6_851_0, author = {Daskalopoulos, P. and del Pino, Manuel}, title = {Type {II} collapsing of maximal solutions to the {Ricci} flow in ${R}^{2}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {851--874}, publisher = {Elsevier}, volume = {24}, number = {6}, year = {2007}, doi = {10.1016/j.anihpc.2006.06.006}, mrnumber = {2371109}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.006/} }
TY - JOUR AU - Daskalopoulos, P. AU - del Pino, Manuel TI - Type II collapsing of maximal solutions to the Ricci flow in ${R}^{2}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 851 EP - 874 VL - 24 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.006/ DO - 10.1016/j.anihpc.2006.06.006 LA - en ID - AIHPC_2007__24_6_851_0 ER -
%0 Journal Article %A Daskalopoulos, P. %A del Pino, Manuel %T Type II collapsing of maximal solutions to the Ricci flow in ${R}^{2}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 851-874 %V 24 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.006/ %R 10.1016/j.anihpc.2006.06.006 %G en %F AIHPC_2007__24_6_851_0
Daskalopoulos, P.; del Pino, Manuel. Type II collapsing of maximal solutions to the Ricci flow in ${R}^{2}$. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 6, pp. 851-874. doi : 10.1016/j.anihpc.2006.06.006. http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.006/
[1] The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988) 79-96. | MR | Zbl
,[2] Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math. 482 (1997) 15-66. | MR | Zbl
, ,[3] The mathematics of moving contact lines in thin liquid films, Notices Amer. Math. Soc. 45 (6) (1998) 689-697. | MR | Zbl
,[4] The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Comm. Pure Appl. Math. 49 (2) (1996) 85-123. | MR | Zbl
, ,[5] The Ricci flow on the 2-sphere, J. Differential Geom. 33 (2) (1991) 325-334. | MR | Zbl
,[6] Wetting: statics and dynamics, Rev. Modern Phys. 57 (3) (1985) 827-863.
,[7] P. Daskalopoulos, N. Sesum, Eternal solutions to the Ricci flow in , preprint. | Zbl
[8] On a singular diffusion equation, Comm. Anal. Geom. 3 (1995) 523-542. | MR | Zbl
, ,[9] Geometric estimates for the logarithmic fast diffusion equation, Comm. Anal. Geom. 12 (1-2) (2004) 143-164. | Zbl
, ,[10] A Stability Technique for Evolution Partial Differential Equations. A Dynamical Systems Approach, Progress in Nonlinear Differential Equations and their Applications, vol. 56, Birkhäuser Boston, Boston, MA, 2004. | MR | Zbl
, ,[11] Eternal solutions to the Ricci flow, J. Differential Geom. 38 (1993) 1-11. | MR | Zbl
,[12] The Ricci flow on surfaces, in: Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262. | MR | Zbl
,[13] The formation of singularities in the Ricci flow, in: Surveys in Differential Geometry, vol. II, Internat. Press, Cambridge, MA, 1995, pp. 7-136. | MR | Zbl
,[14] Asymptotic profile of solutions of a singular diffusion equation as , Nonlinear Anal. Ser. A: Theory Methods 48 (6) (2002) 781-790. | MR | Zbl
,[15] Large time behaviour of solutions of the Ricci flow equation on , Pacific J. Math. 197 (1) (2001) 25-41. | MR | Zbl
,[16] Asymptotic behavior of solutions of the equation near the extinction time, Adv. Differential Equations 8 (2) (2003) 161-187. | MR | Zbl
,[17] Behaviour of solutions of a singular diffusion equation near the extinction time, Nonlinear Anal. 56 (1) (2004) 63-104. | MR
,[18] Self-similar behavior for the equation of fast nonlinear diffusion, Philos. Trans. R. Soc. London Ser. A 343 (1993) 337-375. | Zbl
,[19] The maximal solution of the logarithmic fast diffusion equation in two space dimensions, Adv. Differential Equations 2 (6) (1997) 867-894. | MR | Zbl
, , ,[20] A new result for the porous medium equation derived from the Ricci flow, Bull. Amer. Math. Soc. 28 (1993) 90-94. | MR | Zbl
,[21] The Ricci flow on complete , Comm. Anal. Geom. 1 (1993) 439-472. | MR | Zbl
,Cité par Sources :