Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum
Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 3, pp. 443-469.
@article{AIHPC_2007__24_3_443_0,
     author = {Barrandon, Matthieu},
     title = {Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {443--469},
     publisher = {Elsevier},
     volume = {24},
     number = {3},
     year = {2007},
     doi = {10.1016/j.anihpc.2006.03.007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.007/}
}
TY  - JOUR
AU  - Barrandon, Matthieu
TI  - Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2007
SP  - 443
EP  - 469
VL  - 24
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.007/
DO  - 10.1016/j.anihpc.2006.03.007
LA  - en
ID  - AIHPC_2007__24_3_443_0
ER  - 
%0 Journal Article
%A Barrandon, Matthieu
%T Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum
%J Annales de l'I.H.P. Analyse non linéaire
%D 2007
%P 443-469
%V 24
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.007/
%R 10.1016/j.anihpc.2006.03.007
%G en
%F AIHPC_2007__24_3_443_0
Barrandon, Matthieu. Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 3, pp. 443-469. doi : 10.1016/j.anihpc.2006.03.007. http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.007/

[1] Amick C., On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc. 364 (1994) 399-419. | MR | Zbl

[2] Amick C., Toland J., Uniqueness and related analytic properties for the Benjamin-Ono equation - a nonlinear Neumann problem in the plane, Acta Math. 105 (1989) 1-49.

[3] Barrandon M., Reversible bifurcation of homoclinic solutions in presence of an essential spectrum, J. Math. Fluid Mech. 8 (2006) 267-310. | MR | Zbl

[4] Benjamin T.B., Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967) 559-592. | Zbl

[5] Dias F., Iooss G., Water-waves as a spatial dynamical system, in: Friedlander S., Serre D. (Eds.), Handbook of Mathematical Fluid Dynamics, vol. II, Elsevier, 2003, pp. 443-499. | MR

[6] Iooss G., Gravity and capillary-gravity periodic traveling waves for two superposed fluid layers, one being of infinite depth, J. Math. Fluid. Mech. 1 (1999) 24-61. | MR | Zbl

[7] Iooss G., Lombardi E., Sun S.M., Gravity traveling waves for two superposed fluid layers of infinite depth: a new type of bifurcation, Philos. Trans. R. Soc. Lond. Ser. A 360 (2002) 2245-2336. | MR

[8] Kirchgässner K., Wave solutions of reversible systems and applications, J. Differential Equations 45 (1982) 113-127. | MR | Zbl

[9] Ono H., Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082-1091. | MR

[10] Steinberg S., Meromorphic families of compact operators, Arch. Rational Mech. Anal. 31 (1968/1969) 372-379. | MR | Zbl

[11] Sun S.M., Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Anal. 30 (1997) 5481-5490. | MR | Zbl

Cité par Sources :