@article{AIHPC_2007__24_3_443_0, author = {Barrandon, Matthieu}, title = {Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {443--469}, publisher = {Elsevier}, volume = {24}, number = {3}, year = {2007}, doi = {10.1016/j.anihpc.2006.03.007}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.007/} }
TY - JOUR AU - Barrandon, Matthieu TI - Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 443 EP - 469 VL - 24 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.007/ DO - 10.1016/j.anihpc.2006.03.007 LA - en ID - AIHPC_2007__24_3_443_0 ER -
%0 Journal Article %A Barrandon, Matthieu %T Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 443-469 %V 24 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.007/ %R 10.1016/j.anihpc.2006.03.007 %G en %F AIHPC_2007__24_3_443_0
Barrandon, Matthieu. Benjamin-Ono periodic bifurcating water waves in presence of an essential spectrum. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 3, pp. 443-469. doi : 10.1016/j.anihpc.2006.03.007. http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.007/
[1] On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc. 364 (1994) 399-419. | MR | Zbl
,[2] Uniqueness and related analytic properties for the Benjamin-Ono equation - a nonlinear Neumann problem in the plane, Acta Math. 105 (1989) 1-49.
, ,[3] Reversible bifurcation of homoclinic solutions in presence of an essential spectrum, J. Math. Fluid Mech. 8 (2006) 267-310. | MR | Zbl
,[4] Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967) 559-592. | Zbl
,[5] Water-waves as a spatial dynamical system, in: , (Eds.), Handbook of Mathematical Fluid Dynamics, vol. II, Elsevier, 2003, pp. 443-499. | MR
, ,[6] Gravity and capillary-gravity periodic traveling waves for two superposed fluid layers, one being of infinite depth, J. Math. Fluid. Mech. 1 (1999) 24-61. | MR | Zbl
,[7] Gravity traveling waves for two superposed fluid layers of infinite depth: a new type of bifurcation, Philos. Trans. R. Soc. Lond. Ser. A 360 (2002) 2245-2336. | MR
, , ,[8] Wave solutions of reversible systems and applications, J. Differential Equations 45 (1982) 113-127. | MR | Zbl
,[9] Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082-1091. | MR
,[10] Meromorphic families of compact operators, Arch. Rational Mech. Anal. 31 (1968/1969) 372-379. | MR | Zbl
,[11] Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Anal. 30 (1997) 5481-5490. | MR | Zbl
,Cité par Sources :