@article{AIHPC_2007__24_3_341_0, author = {Tang, Qi and Zhang, Kewei}, title = {An evolutionary double-well problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {341--359}, publisher = {Elsevier}, volume = {24}, number = {3}, year = {2007}, doi = {10.1016/j.anihpc.2006.11.002}, mrnumber = {2319937}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.002/} }
TY - JOUR AU - Tang, Qi AU - Zhang, Kewei TI - An evolutionary double-well problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 341 EP - 359 VL - 24 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.002/ DO - 10.1016/j.anihpc.2006.11.002 LA - en ID - AIHPC_2007__24_3_341_0 ER -
Tang, Qi; Zhang, Kewei. An evolutionary double-well problem. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 3, pp. 341-359. doi : 10.1016/j.anihpc.2006.11.002. http://www.numdam.org/articles/10.1016/j.anihpc.2006.11.002/
[1] Semi-continuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984) 125-145. | MR | Zbl
, ,[2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977) 337-403. | MR | Zbl
,[3] A version of the fundamental theorem of Young measures, in: , , (Eds.), Partial Differential Equations and Continuum Models of Phase Transitions, Lecture Notes in Phys., vol. 334, Springer, Berlin, 1989, pp. 207-215. | MR | Zbl
,[4] Continuity properties and global attractors of generalized semi-flows and the Navier-Stokes equations, J. Nonlinear Sci. 7 (5) (1997) 475-502. | Zbl
,[5] Restrictions on microstructures, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 843-878. | MR | Zbl
, , , ,[6] Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. | MR | Zbl
,[7] Weak solutions for a class of nonlinear systems of visco-elasticity, Arch. Ration. Mech. Anal. 155 (2000) 299-334. | MR | Zbl
,[8] An unusual minimization principle for parabolic gradient flows, SIAM J. Math. Anal. 27 (1) (1996) 1-4. | MR | Zbl
,[9] Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions, Analysis 7 (1987) 83-93. | MR | Zbl
,[10] Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser, Basel, 1993. | MR | Zbl
,[11] Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. | MR | Zbl
,[12] The relaxation of a double-well energy, Cont. Mech. Therm. 3 (1991) 981-1000. | MR | Zbl
,[13] Characterizations of Young measures generated by gradients, Arch. Ration. Mech. Anal. 115 (4) (1991) 329-365. | MR | Zbl
, ,[14] Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. 4 (1) (1994) 59-90. | MR | Zbl
, ,[15] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Ph.D. Thesis, Technical University of Denmark, Lyngby, 1994.
[16] Multiple Integrals in the Calculus of Variations, Springer, 1966. | MR | Zbl
,[17] Unexpected solutions of first and second order partial differential equations, Special Volume Proc. ICM Volume II Documenta Math. (1998) 691-702. | EuDML | MR | Zbl
, ,[18] M.O. Rieger, Young measure solutions for non-convex elasto-dynamics, Preprint. | Zbl
[19] Rank-one convexity does not imply quasi-convexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 185-189. | MR | Zbl
,[20] Time dependent Ginzburg-Landau equations of superconductivity, Physica D 88 (1995) 139-166. | MR | Zbl
, ,[21] Q. Tang, K.W. Zhang, Convergence of heat flow solutions under multi-well potential energy, Preprint.
[22] On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, in: (Ed.), Partial Differential Equations, Proc. Sympos., Tianjin, 1986, Lecture Notes on Math., vol. 1306, Springer-Verlag, 1988, pp. 262-277. | MR | Zbl
,[23] Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré 7 (1990) 345-365. | EuDML | Numdam | MR | Zbl
,[24] A two-well structure and intrinsic mountain pass points, Cal. Var. Partial Differential Equations 13 (2001) 231-264. | MR | Zbl
,Cité par Sources :