@article{AIHPC_2007__24_2_227_0, author = {Bertsch, M. and Primi, I.}, title = {Traveling wave solutions of the heat flow of director fields}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {227--250}, publisher = {Elsevier}, volume = {24}, number = {2}, year = {2007}, doi = {10.1016/j.anihpc.2006.03.008}, mrnumber = {2310694}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.008/} }
TY - JOUR AU - Bertsch, M. AU - Primi, I. TI - Traveling wave solutions of the heat flow of director fields JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 227 EP - 250 VL - 24 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.008/ DO - 10.1016/j.anihpc.2006.03.008 LA - en ID - AIHPC_2007__24_2_227_0 ER -
%0 Journal Article %A Bertsch, M. %A Primi, I. %T Traveling wave solutions of the heat flow of director fields %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 227-250 %V 24 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.008/ %R 10.1016/j.anihpc.2006.03.008 %G en %F AIHPC_2007__24_2_227_0
Bertsch, M.; Primi, I. Traveling wave solutions of the heat flow of director fields. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 2, pp. 227-250. doi : 10.1016/j.anihpc.2006.03.008. http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.008/
[1] Point singularities and nonuniqueness for the heat flow for harmonic maps, Comm. Partial Differential Equations 28 (2003) 1135-1160. | MR | Zbl
, , ,[2] Nonuniqueness for the heat flow of harmonic maps on the disk, Arch. Rational Mech. Anal. 161 (2) (2002) 93-112. | MR | Zbl
, , ,[3] Traveling wave solutions of harmonic heat flow, Calc. Var. Partial Differential Equations 26 (2006) 489-509. | MR | Zbl
, , ,[4] M. Bertsch, I. Primi, Non uniqueness of the traveling wave speed for harmonic heat flow, preprint, 2005.
[5] On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pura Appl. CLXXIX (2001) 331-360. | MR | Zbl
, , ,[6] Relaxed energies for harmonic maps, in: Variational Methods (Paris, 1988), Progress in Nonlinear Differential Equations and their Applications, vol. 4, Birkhäuser Boston, Boston, 1990, pp. 37-52. | MR | Zbl
, , ,[7] Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom. 36 (2) (1992) 507-515. | MR | Zbl
, , ,[8] Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 335-344. | Numdam | MR | Zbl
,[9] Harmonic map heat flow for axially symmetric data, Manuscripta Math. 73 (1991) 207-228. | MR | Zbl
,[10] Concentrated boundary data and axially symmetric harmonic maps, J. Geom. Anal. 3 (1993) 279-292. | MR | Zbl
,[11] Harmonic Maps of Manifolds with Boundary, Lecture Notes, vol. 471, Springer, Berlin, 1975. | MR | Zbl
,[12] Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure Appl. Math. 14 (1992) 417-459. | MR | Zbl
, , ,[13] Harmonic mappings between Riemannian manifolds, in: Proc. Centre Math. Analysis, Canberra, Australian National University Press, 1983. | MR | Zbl
,[14] Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985. | MR | Zbl
,[15] I. Primi, Nonuniqueness of the heat flow of director fields, in preparation.
[16] Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (2) (1982) 401-441. | MR | Zbl
,[17] Reverse bubbling of currents and harmonic heat flows with prescribed singular set, Calc. Var. Partial Differential Equations 19 (4) (2004) 337-378. | MR | Zbl
,[18] I. Primi, Traveling Waves of Director Fields, PhD thesis, University of Rome “La Sapienza”, 2005.
[19] Reverse bubbling and nonuniqueness in the harmonic map flow, Int. Math. Res. Notices 10 (2002) 505-520. | MR | Zbl
,[20] Flow alignment in nematic liquid crystals in flows with cylindrical symmetry, Differential Integral Equations 14 (2) (2001) 189-211. | MR | Zbl
,Cité par Sources :