Planar binary trees and perturbative calculus of observables in classical field theory
Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 6, pp. 891-909.
@article{AIHPC_2006__23_6_891_0,
     author = {Harrivel, Dikanaina},
     title = {Planar binary trees and perturbative calculus of observables in classical field theory},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {891--909},
     publisher = {Elsevier},
     volume = {23},
     number = {6},
     year = {2006},
     doi = {10.1016/j.anihpc.2005.09.006},
     mrnumber = {2271700},
     zbl = {05138725},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.09.006/}
}
TY  - JOUR
AU  - Harrivel, Dikanaina
TI  - Planar binary trees and perturbative calculus of observables in classical field theory
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2006
SP  - 891
EP  - 909
VL  - 23
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2005.09.006/
DO  - 10.1016/j.anihpc.2005.09.006
LA  - en
ID  - AIHPC_2006__23_6_891_0
ER  - 
%0 Journal Article
%A Harrivel, Dikanaina
%T Planar binary trees and perturbative calculus of observables in classical field theory
%J Annales de l'I.H.P. Analyse non linéaire
%D 2006
%P 891-909
%V 23
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2005.09.006/
%R 10.1016/j.anihpc.2005.09.006
%G en
%F AIHPC_2006__23_6_891_0
Harrivel, Dikanaina. Planar binary trees and perturbative calculus of observables in classical field theory. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 6, pp. 891-909. doi : 10.1016/j.anihpc.2005.09.006. http://www.numdam.org/articles/10.1016/j.anihpc.2005.09.006/

[1] Adams R.A., Sobolev Spaces, Pure Appl. Math., Academic Press, New York, 1975. | MR | Zbl

[2] Bahns D., Unitary quantum field theory on the noncommutative Minkowski space, hep-th/0212266v2.

[3] Brezis H., Analyse fonctionnelle, Masson, 1983. | MR | Zbl

[4] Brouder C., On the trees of quantum fields, Eur. Phys. J. C 12 (2000) 535-546, hep-th/9906111.

[5] Brouder C., Butcher series and renormalization, BIT 19 (2004) 714-741, hep-th/0003202. | MR

[6] Brouder C., Frabetti A., Renormalization of QED with planar binary trees, Eur. Phys. J. C 19 (2001) 714-741, hep-th/0003202. | Zbl

[7] Duquesne T., Le Gall J.-F., Random Trees, Lévy Processes and Spatial Branching Processes, Astérisque, vol. 281, 2002. | Numdam | MR | Zbl

[8] Frabetti A., Simplicial properties of the set of planar binary trees, J. Algebraic Combin. (1999). | MR | Zbl

[9] Graham R., Knuth D., Patashnik O., Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, New York, 1989. | MR | Zbl

[10] D. Harrivel, Non linear control and perturbative expansion using Planar Trees, 2005, in press.

[11] Hélein F., Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory, Contemp. Math. 350 (2004) 127-147. | MR | Zbl

[12] Hélein F., Kouneiher J., Finite dimensional Hamiltonian formalism for gauge and quantum field theory, J. Math. Phys. 43 (2002) 5. | MR | Zbl

[13] F. Hélein, J. Kouneiher, Lepage-Dedecker general multisymplectic formalisms, Adv. Theor. Math. Phys. (2004), in press.

[14] Itzykson C., Zuber J.-B., Quantum Field Theory, McGraw-Hill International Book Co., New York, 1980. | MR

[15] Kijowski J., A finite dimensional canonical formalism in the classical field theories, Comm. Math. Phys. 30 (1973) 99-128. | MR

[16] Le Gall J.-F., Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser, Boston, 1999. | MR | Zbl

[17] Rudin W., Analyse Fonctionnelle, Ediscience international, 1995.

[18] Sedgewick R., Flajolet P., An Introduction to the Analysis of Algorithms, Addison Wesley Professional, New York, 1995. | Zbl

[19] W.M. Tulczyjew, Geometry of phase space. Seminar in Warsaw, 1968.

[20] Van Der Lann P., Some Hopf algebras of trees, math.QA/0106244.

Cité par Sources :