@article{AIHPC_2006__23_6_829_0, author = {Li, Yongqing and Wang, Zhi-Qiang and Zeng, Jing}, title = {Ground states of nonlinear {Schr\"odinger} equations with potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {829--837}, publisher = {Elsevier}, volume = {23}, number = {6}, year = {2006}, doi = {10.1016/j.anihpc.2006.01.003}, mrnumber = {2271695}, zbl = {1111.35079}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.003/} }
TY - JOUR AU - Li, Yongqing AU - Wang, Zhi-Qiang AU - Zeng, Jing TI - Ground states of nonlinear Schrödinger equations with potentials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 829 EP - 837 VL - 23 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.003/ DO - 10.1016/j.anihpc.2006.01.003 LA - en ID - AIHPC_2006__23_6_829_0 ER -
%0 Journal Article %A Li, Yongqing %A Wang, Zhi-Qiang %A Zeng, Jing %T Ground states of nonlinear Schrödinger equations with potentials %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 829-837 %V 23 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.003/ %R 10.1016/j.anihpc.2006.01.003 %G en %F AIHPC_2006__23_6_829_0
Li, Yongqing; Wang, Zhi-Qiang; Zeng, Jing. Ground states of nonlinear Schrödinger equations with potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 6, pp. 829-837. doi : 10.1016/j.anihpc.2006.01.003. http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.003/
[1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on , Progr. Math., Birkhäuser, in press. | MR | Zbl
[2] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. | MR | Zbl
, ,[3] Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983) 313-345. | MR | Zbl
, ,[4] On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986) 283-308. | MR | Zbl
, ,[5] A positive solution for a nonlinear Schrödinger equation on , Indiana Univ. Math. J. 54 (2005) 443-464. | MR | Zbl
, ,[6] The concentration-compactness principle in the calculus of variations. The locally compact case. I & II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109-145, 223-283. | Numdam | MR | Zbl
,[7] Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004) 879-901. | MR | Zbl
, , ,[8] On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud. 4 (2004) 561-572. | MR | Zbl
, ,[9] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270-291. | MR | Zbl
,[10] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162. | MR | Zbl
,[11] Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 2000. | MR | Zbl
, ,Cité par Sources :