@article{AIHPC_2006__23_5_629_0, author = {Xu, Yongzhong}, title = {Note on an inequality}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {629--639}, publisher = {Elsevier}, volume = {23}, number = {5}, year = {2006}, doi = {10.1016/j.anihpc.2005.07.002}, mrnumber = {2259609}, zbl = {05072654}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.07.002/} }
Xu, Yongzhong. Note on an inequality. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 5, pp. 629-639. doi : 10.1016/j.anihpc.2005.07.002. http://www.numdam.org/articles/10.1016/j.anihpc.2005.07.002/
[1] Computation of the difference of topology at infinity for Yamabe-type problems on annuli-domains. I, II, Duke Math. J. 94 (2) (1998) 215-229, 231-255. | MR | Zbl
, ,[2] Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman Scientific & Technical, Harlow, 1989. | MR | Zbl
,[3] An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, A celebration of John F. Nash, Jr., Duke Math. J. 81 (2) (1996) 323-466. | MR | Zbl
,[4] Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent, in: Topics in Geometry, Progr. Nonlinear Differential Equations Appl., vol. 20, Birkhäuser Boston, Boston, MA, 1996, pp. 1-100. | MR | Zbl
, ,[5] The difference of topology at infinity in changing-sign Yamabe problems on (the case of two masses), Comm. Pure Appl. Math. 54 (4) (2001) 450-478. | MR | Zbl
, ,[6] On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (3) (1988) 253-294. | MR | Zbl
, ,[7] On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1) (1995) 67-93. | MR | Zbl
, , ,[8] A. Bahri, Y. Xu, Recent progress in conformal and contact geometry, in press.
Cité par Sources :