@article{AIHPC_2006__23_4_499_0, author = {Medville, Kai and Vogelius, Michael S.}, title = {Existence and blow up of solutions to certain classes of two-dimensional nonlinear {Neumann} problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {499--538}, publisher = {Elsevier}, volume = {23}, number = {4}, year = {2006}, doi = {10.1016/j.anihpc.2005.02.008}, mrnumber = {2245754}, zbl = {05060815}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.02.008/} }
TY - JOUR AU - Medville, Kai AU - Vogelius, Michael S. TI - Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 499 EP - 538 VL - 23 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2005.02.008/ DO - 10.1016/j.anihpc.2005.02.008 LA - en ID - AIHPC_2006__23_4_499_0 ER -
%0 Journal Article %A Medville, Kai %A Vogelius, Michael S. %T Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 499-538 %V 23 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2005.02.008/ %R 10.1016/j.anihpc.2005.02.008 %G en %F AIHPC_2006__23_4_499_0
Medville, Kai; Vogelius, Michael S. Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 4, pp. 499-538. doi : 10.1016/j.anihpc.2005.02.008. http://www.numdam.org/articles/10.1016/j.anihpc.2005.02.008/
[1] Electronic properties of two-dimensional system, Rev. Modern Phys. 54 (1982) 437-621.
, , ,[2] Mathematical Problems from Combustion Theory, Appl. Math. Sci., vol. 83, Springer-Verlag, Berlin, 1989. | MR | Zbl
, ,[3] Ginzburg-Landau Vortices, Birkhäuser, Boston, 1994. | MR | Zbl
, , ,[4] Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223-1253. | MR | Zbl
, ,[5] Singular solutions to a nonlinear elliptic boundary value problem originating from corrosion modeling, Quart. Appl. Math. 60 (2002) 675-694. | MR | Zbl
, ,[6] J. Davila, A linear elliptic equation with a nonlinear boundary condition, Preprint, Rutgers University, 2001.
[7] Current Distributions and Electrode Shape Changes in Electrochemical Systems, Lecture Notes in Engrg., vol. 75, Springer-Verlag, Berlin, 1992.
,[8] A globalization of the Implicit Function Theorem with applications to nonlinear elliptic equations, Contemp. Math. 289 (2001) 249-272. | MR | Zbl
,[9] Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Math. Appl., vol. 13, Springer-Verlag, Berlin, 1993. | MR | Zbl
,[10] On the existence and “blow up” of solutions to a two-dimensional nonlinear boundary-value problem arising in corrosion modelling, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 119-149, Corrigendum to same, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 729-730. | Zbl
, ,[11] K. Medville, Ph.D. Thesis, Rutgers University, 2004.
[12] Blow-up behavior of planar harmonic functions satisfying a certain exponential Neumann boundary condition, SIAM J. Math. Anal. 36 (2005) 1772-1806. | MR | Zbl
, ,[13] Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal. 3 (1990) 173-188. | MR | Zbl
, ,[14] Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. | MR | Zbl
,[15] Asymptotic behavior of Stekloff eigenvalues and eigenfunctions, SIAM J. Appl. Math. 20 (1971) 482-490. | MR | Zbl
,[16] Variational Methods, Ergeb. Math. Grenzgeb., vol. 34, Springer-Verlag, Berlin, 1996. | MR | Zbl
,[17] A nonlinear elliptic boundary value problem related to corrosion modeling, Quart. Appl. Math. 56 (1998) 479-505. | MR | Zbl
, ,Cité par Sources :