Forced vibrations of wave equations with non-monotone nonlinearities
Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 4, pp. 439-474.
@article{AIHPC_2006__23_4_439_0,
     author = {Berti, Massimiliano and Biasco, Luca},
     title = {Forced vibrations of wave equations with non-monotone nonlinearities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {439--474},
     publisher = {Elsevier},
     volume = {23},
     number = {4},
     year = {2006},
     doi = {10.1016/j.anihpc.2005.05.004},
     mrnumber = {2245752},
     zbl = {1103.35076},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/}
}
TY  - JOUR
AU  - Berti, Massimiliano
AU  - Biasco, Luca
TI  - Forced vibrations of wave equations with non-monotone nonlinearities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2006
SP  - 439
EP  - 474
VL  - 23
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/
DO  - 10.1016/j.anihpc.2005.05.004
LA  - en
ID  - AIHPC_2006__23_4_439_0
ER  - 
%0 Journal Article
%A Berti, Massimiliano
%A Biasco, Luca
%T Forced vibrations of wave equations with non-monotone nonlinearities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2006
%P 439-474
%V 23
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/
%R 10.1016/j.anihpc.2005.05.004
%G en
%F AIHPC_2006__23_4_439_0
Berti, Massimiliano; Biasco, Luca. Forced vibrations of wave equations with non-monotone nonlinearities. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 4, pp. 439-474. doi : 10.1016/j.anihpc.2005.05.004. http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/

[1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on R n , Birkhäuser, in press. | MR | Zbl

[2] Bambusi D., Paleari S., Families of periodic solutions of resonant PDEs, J. Nonlinear Sci. 11 (1) (2001) 69-87. | MR | Zbl

[3] Bartsch T., Ding Y.H., Lee C., Periodic solutions of a wave equation with concave and convex nonlinearities, J. Differential Equations 153 (1) (1999) 121-141. | MR | Zbl

[4] Berti M., Biasco L., Periodic solutions of nonlinear wave equations with non-monotone forcing terms, Rend. Mat. Acc. Naz. Lincei, s. 9 16 (2) (2005) 109-116. | MR | Zbl

[5] Berti M., Bolle P., Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys. 243 (2) (2003) 315-328. | MR | Zbl

[6] Berti M., Bolle P., Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Anal. 56 (2004) 1011-1046. | MR | Zbl

[7] M. Berti, P. Bolle, Cantor families of periodic solution for completely resonant wave equations, Preprint SISSA, 2004. | MR

[8] Bourgain J., Periodic solutions of nonlinear wave equations, in: Harmonic Analysis and Partial Differential Equations, Chicago Lectures in Math., Univ. Chicago Press, 1999, pp. 69-97. | MR | Zbl

[9] Brézis H., Coron J.-M., Nirenberg L., Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (5) (1980) 667-684. | MR | Zbl

[10] Brézis H., Nirenberg L., Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math. 31 (1) (1978) 1-30. | MR | Zbl

[11] Coron J.-M., Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann. 262 (2) (1983) 273-285. | EuDML | MR | Zbl

[12] De Simon L., Torelli H., Soluzioni periodiche di equazioni a derivate parziali di tipo iperbolico non lineari, Rend. Sem. Mat. Univ. Padova 40 (1968) 380-401. | EuDML | Numdam | MR | Zbl

[13] Gentile G., Mastropietro V., Procesi M., Periodic solutions for completely resonant nonlinear wave equations, Comm. Math. Phys. 256 (2005) 437-490. | MR | Zbl

[14] Hall W.S., On the existence of periodic solutions for the equations D tt u+(-1) p 0ex0exD x 2p u=ϵf(·,·,u), J. Differential Equations 7 (1970) 509-526. | MR | Zbl

[15] Hofer H., On the range of a wave operator with non-monotone nonlinearity, Math. Nachr. 106 (1982) 327-340. | MR | Zbl

[16] Lovicarová H., Periodic solutions of a weakly nonlinear wave equation in one dimension, Czechoslovak Math. J. 19 (94) (1969) 324-342. | EuDML | MR | Zbl

[17] Plotnikov P.I., Yungerman L.N., Periodic solutions of a weakly nonlinear wave equation with an irrational relation of period to interval length, Differentsial'nye Uravneniya 24 (9) (1988) 1599-1607, 1654 (in Russian); Translation in, Differential Equations 24 (9) (1988) 1059-1065, (1989). | MR | Zbl

[18] Rabinowitz P., Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967) 145-205. | MR | Zbl

[19] Rabinowitz P., Time periodic solutions of nonlinear wave equations, Manuscripta Math. 5 (1971) 165-194. | EuDML | MR | Zbl

[20] Torelli G., Soluzioni periodiche dell’equazione non lineare u tt -u xx +ϵF(x,t,u)=0, Rend. Istit. Mat. Univ. Trieste 1 (1969) 123-137. | MR | Zbl

[21] Willem M., Density of the range of potential operators, Proc. Amer. Math. Soc. 83 (2) (1981) 341-344. | MR | Zbl

Cité par Sources :