Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term
Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 1, pp. 97-126.
@article{AIHPC_2006__23_1_97_0,
     author = {Dall'Aglio, A. and Giachetti, D. and Leone, C. and Segura de Le\'on, S.},
     title = {Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {97--126},
     publisher = {Elsevier},
     volume = {23},
     number = {1},
     year = {2006},
     doi = {10.1016/j.anihpc.2005.02.006},
     mrnumber = {2194583},
     zbl = {1103.35040},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.006/}
}
TY  - JOUR
AU  - Dall'Aglio, A.
AU  - Giachetti, D.
AU  - Leone, C.
AU  - Segura de León, S.
TI  - Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2006
SP  - 97
EP  - 126
VL  - 23
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.006/
DO  - 10.1016/j.anihpc.2005.02.006
LA  - en
ID  - AIHPC_2006__23_1_97_0
ER  - 
%0 Journal Article
%A Dall'Aglio, A.
%A Giachetti, D.
%A Leone, C.
%A Segura de León, S.
%T Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term
%J Annales de l'I.H.P. Analyse non linéaire
%D 2006
%P 97-126
%V 23
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.006/
%R 10.1016/j.anihpc.2005.02.006
%G en
%F AIHPC_2006__23_1_97_0
Dall'Aglio, A.; Giachetti, D.; Leone, C.; Segura de León, S. Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 1, pp. 97-126. doi : 10.1016/j.anihpc.2005.02.006. https://www.numdam.org/articles/10.1016/j.anihpc.2005.02.006/

[1] Alt H.W., Luckhaus S., Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983) 311-341. | MR | Zbl

[2] Andreu F., Mazón J.M., Segura De León S., Toledo J., Existence and uniqueness for a degenerate parabolic equation with L1 data, Trans. Amer. Math. Soc. 351 (1999) 285-306. | MR | Zbl

[3] Aronson D.G., Serrin J., Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967) 81-122. | MR | Zbl

[4] Aubin J.P., Un théorème de compacité, C. R. Acad. Sci. 256 (1963) 5042-5044. | MR | Zbl

[5] Bénilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vázquez J.L., An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa 22 (2) (1995) 240-273. | Numdam | MR | Zbl

[6] Blanchard D., Porretta A., Nonlinear parabolic equations with natural growth terms and measure initial data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30 (4) (2001) 583-622. | Numdam | MR | Zbl

[7] Boccardo L., Murat F., Puel J.P., Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa 11 (1984) 213-235. | Numdam | MR | Zbl

[8] Boccardo L., Murat F., Puel J.P., Existence results for some quasilinear parabolic equations, Nonlinear Anal. 13 (1989) 373-392. | MR | Zbl

[9] Boccardo L., Porzio M.M., Bounded solutions for a class of quasi-linear parabolic problems with a quadratic gradient term, Progr. Nonlinear Differential Equations 50 (2002) 39-48. | MR | Zbl

[10] Boccardo L., Segura De León S., Trombetti C., Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic grandient term, J. Math. Pures Appl. 80 (9) (2001) 919-940. | MR | Zbl

[11] Brezis H., Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983. | MR | Zbl

[12] Dall'Aglio A., Giachetti D., Puel J.P., Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl. 181 (2002) 407-426. | MR | Zbl

[13] A. Dall'Aglio, D. Giachetti, J.P. Puel, Nonlinear parabolic equations with natural growth in general domains, Bull. Un. Mat. Ital., in press. | Zbl

[14] Dall'Aglio A., Orsina L., Nonlinear parabolic equations with natural growth conditions and L1 data, Nonlinear Anal. 27 (1996) 59-73. | MR | Zbl

[15] Dibenedetto E., Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. | MR | Zbl

[16] Evans L.C., Partial Differential Equations, Graduate Stud. in Math., vol. 19, American Mathematical Society, Providence, RI, 1998. | Zbl

[17] Ferone V., Murat F., Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. 42 (2000) 1309-1326. | MR | Zbl

[18] Ferone V., Posteraro M.R., Rakotoson J.M., L1-estimates for nonlinear elliptic problems with p-growth in the gradient, J. Ineq. Appl. 3 (1999) 109-125. | MR | Zbl

[19] Ferone V., Posteraro M.R., Rakotoson J.M., Nonlinear parabolic equations with p-growth and unbounded data, C. R. Acad. Sci. Paris Sèr. I Math. 328 (1999) 291-296. | MR | Zbl

[20] Ferone V., Posteraro M.R., Rakotoson J.M., Nonlinear parabolic problems with critical growth and unbounded data, Indiana Univ. Math. J. 50 (3) (2001) 1201-1215. | MR | Zbl

[21] Ladyzenskaja O.A., Solonnikov V.A., Ural'Ceva N.N., Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, RI, 1968. | MR | Zbl

[22] Landes R., On the existence of weak solutions for quasilinear parabolic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981) 217-237. | MR | Zbl

[23] Landes R., Mustonen V., On parabolic initial-boundary value problems with critical growth for the gradient, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 135-158. | Numdam | MR | Zbl

[24] Mokrane A., Existence of bounded solutions of some nonlinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 107 (3-4) (1987) 313-326. | MR | Zbl

[25] Orsina L., Porzio M.M., LQ-estimate and existence of solutions for some nonlinear parabolic equations, Boll. Un. Math. Ital. B 6 (1992) 631-647. | MR | Zbl

[26] Porretta A., Regularity for entropy solutions of a class of parabolic equations with non regular initial datum, Dynamic Systems Appl. 7 (1998) 53-71. | MR | Zbl

[27] A. Porretta, S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth, Preprint.

[28] Prignet A., Existence and uniqueness of entropy solution of parabolic problems with L1 data, Nonlinear Anal. 28 (12) (1997) 1943-1954. | MR | Zbl

[29] Simon J., Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl. 146 (1987) 65-96. | MR | Zbl

Cité par Sources :