@article{AIHPC_2005__22_2_143_0, author = {Malchiodi, A. and Ni, Wei-Ming and Wei, Juncheng}, title = {Multiple clustered layer solutions for semilinear {Neumann} problems on a ball}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {143--163}, publisher = {Elsevier}, volume = {22}, number = {2}, year = {2005}, doi = {10.1016/j.anihpc.2004.05.003}, mrnumber = {2124160}, zbl = {02165096}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.05.003/} }
TY - JOUR AU - Malchiodi, A. AU - Ni, Wei-Ming AU - Wei, Juncheng TI - Multiple clustered layer solutions for semilinear Neumann problems on a ball JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 143 EP - 163 VL - 22 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.05.003/ DO - 10.1016/j.anihpc.2004.05.003 LA - en ID - AIHPC_2005__22_2_143_0 ER -
%0 Journal Article %A Malchiodi, A. %A Ni, Wei-Ming %A Wei, Juncheng %T Multiple clustered layer solutions for semilinear Neumann problems on a ball %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 143-163 %V 22 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.05.003/ %R 10.1016/j.anihpc.2004.05.003 %G en %F AIHPC_2005__22_2_143_0
Malchiodi, A.; Ni, Wei-Ming; Wei, Juncheng. Multiple clustered layer solutions for semilinear Neumann problems on a ball. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 2, pp. 143-163. doi : 10.1016/j.anihpc.2004.05.003. http://www.numdam.org/articles/10.1016/j.anihpc.2004.05.003/
[1] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Comm. Math. Phys. 235 (2003) 427-466. | MR | Zbl
, , ,[2] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part II, Indiana Univ. Math. J. 53 (2004) 297-329. | MR | Zbl
, , ,[3] Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations 160 (2000) 283-356. | MR | Zbl
, ,[4] Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999) 1-69. | MR | Zbl
, , ,[5] Uniqueness of the ground state solution of in , Comm. PDE 16 (1991) 1549-1572. | MR | Zbl
, ,[6] Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (3) (1999) 883-898. | MR | Zbl
, ,[7] Two-bubble solutions in the super-critical Bahri-Coron's problem, Cal. Var. PDE 16 (2) (2003) 113-145. | MR | Zbl
, , ,[8] On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999) 63-79. | MR | Zbl
, , ,[9] On the role of distance function in some singularly perturbed problems, Comm. PDE 25 (2000) 155-177. | MR | Zbl
, , ,[10] Mutiple peak solutions for some singular perturbation problems, Cal. Var. PDE 10 (2000) 119-134. | MR | Zbl
, , ,[11] Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999) 241-262. | MR | Zbl
, ,[12] Multi-layer solutions for an elliptic problem, J. Differential Equations 194 (2003) 382-405. | MR | Zbl
, ,[13] Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27. | MR | Zbl
, ,[14] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math. 52 (2000) 522-538. | MR | Zbl
, ,[15] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 249-289. | Numdam | MR | Zbl
, , ,[16] Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. PDE 11 (2000) 143-175. | MR | Zbl
, , ,[17] On a singularly perturbed equation with Neumann boundary condition, Comm. PDE 23 (1998) 487-545. | MR | Zbl
,[18] The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998) 1445-1490. | MR | Zbl
, ,[19] Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations 72 (1988) 1-27. | MR | Zbl
, , ,[20] Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math. 55 (2002) 1507-1508. | MR | Zbl
, ,[21] Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, AIHP Analyse Nonlineaire 20 (1) (2003) 107-143. | Numdam | MR | Zbl
, ,[22] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18. | MR | Zbl
,[23] On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991) 819-851. | MR | Zbl
, ,[24] Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993) 247-281. | MR | Zbl
, ,[25] Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math. 12 (1995) 327-365. | MR | Zbl
, ,[26] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J. 94 (1998) 597-618. | MR | Zbl
, , ,[27] On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995) 731-768. | MR | Zbl
, ,[28] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (1996) 315-333. | MR | Zbl
,[29] On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations 134 (1997) 104-133. | MR | Zbl
,[30] On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J. 50 (1998) 159-178. | MR | Zbl
,[31] On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Differential Integral Equations 13 (2000) 15-45. | MR | Zbl
,[32] Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 459-492. | Numdam | MR | Zbl
, ,[33] Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999) 585-606. | MR | Zbl
, ,Cité par Sources :