@article{AIHPC_2004__21_5_639_0, author = {Molle, Riccardo and Passaseo, Donato}, title = {Positive solutions of slightly supercritical elliptic equations in symmetric domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {639--656}, publisher = {Elsevier}, volume = {21}, number = {5}, year = {2004}, doi = {10.1016/j.anihpc.2003.09.004}, mrnumber = {2086752}, zbl = {02116182}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2003.09.004/} }
TY - JOUR AU - Molle, Riccardo AU - Passaseo, Donato TI - Positive solutions of slightly supercritical elliptic equations in symmetric domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 639 EP - 656 VL - 21 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2003.09.004/ DO - 10.1016/j.anihpc.2003.09.004 LA - en ID - AIHPC_2004__21_5_639_0 ER -
%0 Journal Article %A Molle, Riccardo %A Passaseo, Donato %T Positive solutions of slightly supercritical elliptic equations in symmetric domains %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 639-656 %V 21 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2003.09.004/ %R 10.1016/j.anihpc.2003.09.004 %G en %F AIHPC_2004__21_5_639_0
Molle, Riccardo; Passaseo, Donato. Positive solutions of slightly supercritical elliptic equations in symmetric domains. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 5, pp. 639-656. doi : 10.1016/j.anihpc.2003.09.004. http://www.numdam.org/articles/10.1016/j.anihpc.2003.09.004/
[1] Elliptic equations with nearly critical growth, J. Differential Equations 70 (3) (1987) 349-365. | MR | Zbl
, ,[2] On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988) 253-294. | MR | Zbl
, ,[3] On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. 3 (1) (1995) 67-93. | MR | Zbl
, , ,[4] Elliptic equations with limiting Sobolev exponents - The impact of topology, Comm. Pure Appl. Math. 39 (S suppl.) (1986) S17-S39. | MR | Zbl
,[5] Asymptotics for elliptic equations involving critical growth, in: , , (Eds.), P.D.E. and the Calculus of Variations, Birkhäuser, Basel, 1989, pp. 149-192. | MR | Zbl
, ,[6] Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math. 299 (7) (1984) 209-212. | MR | Zbl
,[7] A note on an equation with critical exponent, Bull. London Math. Soc. 20 (6) (1988) 600-602. | MR | Zbl
,[8] Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped domains, Nonlinear Anal. Ser. A: TMA 41 (5/6) (2000) 745-761. | MR | Zbl
, ,[9] Multipeak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations 182 (2) (2002) 511-540. | MR | Zbl
, , ,[10] Positive solutions of Δu+u(n+2)/(n−2)=0 on contractible domains, J. Partial Differential Equations 2 (4) (1989) 83-88. | Zbl
,[11] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (2) (1991) 159-174. | Numdam | MR | Zbl
,[12] Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (5) (1975) 567-597. | MR | Zbl
, ,[13] Positive solutions for slightly super-critical elliptic equations in contractible domains, Preprint Dip. Matem. Univ. Lecce 6 (2001), C. R. Acad. Sci. Paris Sér. I Math. 335 (5) (2002) 459-462. | MR | Zbl
, ,[14] Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains, C. R. Acad. Sci. Paris Sér. I Math. 335 (12) (2002) 1029-1032. | MR | Zbl
, ,[15] R. Molle, D. Passaseo, On the existence of positive solutions of slightly supercritical elliptic equations, preprint. | MR
[16] R. Molle, D. Passaseo, A finite dimensional reduction method for slightly supercritical elliptic problems, preprint. | MR
[17] Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math. 65 (2) (1989) 147-165. | MR | Zbl
,[18] Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal. 114 (1) (1993) 97-105. | MR | Zbl
,[19] New nonexistence results for elliptic equations with supercritical nonlinearity, Differential Integral Equations 8 (3) (1995) 577-586. | MR | Zbl
,[20] Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J. 92 (2) (1998) 429-457. | MR | Zbl
,[21] On the eigenfunctions of the equation Δu+λf(u)=0, Soviet. Math. Dokl. 6 (1965) 1408-1411.
,[22] Sur un problème variationnel non compact: l'effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I Math. 308 (12) (1989) 349-352. | MR | Zbl
,[23] A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. 13 (10) (1989) 1241-1249. | MR | Zbl
,[24] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1) (1990) 1-52. | MR | Zbl
,[25] The topological impact of critical points at infinity in a variational problem with lack of compactness: the dimension 3, Adv. Differential Equations 4 (4) (1999) 581-616. | MR | Zbl
,[26] Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353-372. | MR | Zbl
,[27] High-energy solutions for a nonlinear elliptic problem with slightly supercritical exponent, Nonlinear Anal. Ser. A: Theory Methods 38 (4) (1999) 527-546. | MR | Zbl
,Cité par Sources :