@article{AIHPC_2003__20_5_843_0, author = {Felmer, Patricio L. and Quaas, Alexander}, title = {On critical exponents for the {Pucci's} extremal operators}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {843--865}, publisher = {Elsevier}, volume = {20}, number = {5}, year = {2003}, doi = {10.1016/S0294-1449(03)00011-8}, mrnumber = {1995504}, zbl = {01975936}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0294-1449(03)00011-8/} }
TY - JOUR AU - Felmer, Patricio L. AU - Quaas, Alexander TI - On critical exponents for the Pucci's extremal operators JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 843 EP - 865 VL - 20 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0294-1449(03)00011-8/ DO - 10.1016/S0294-1449(03)00011-8 LA - en ID - AIHPC_2003__20_5_843_0 ER -
%0 Journal Article %A Felmer, Patricio L. %A Quaas, Alexander %T On critical exponents for the Pucci's extremal operators %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 843-865 %V 20 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0294-1449(03)00011-8/ %R 10.1016/S0294-1449(03)00011-8 %G en %F AIHPC_2003__20_5_843_0
Felmer, Patricio L.; Quaas, Alexander. On critical exponents for the Pucci's extremal operators. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 5, pp. 843-865. doi : 10.1016/S0294-1449(03)00011-8. http://www.numdam.org/articles/10.1016/S0294-1449(03)00011-8/
[1] Fully Nonlinear Elliptic Equation, Colloquium Publication, 43, American Mathematical Society, 1995. | MR | Zbl
, ,[2] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (3) (1989) 271-297. | MR | Zbl
, , ,[3] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 3 (3) (1991) 615-622. | MR | Zbl
, ,[4] A geometric proof of Kwong-Mc Leod uniqueness result, SIAM J. Math. Anal. 24 (1993) 436-443. | MR | Zbl
, ,[5] Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972) 81-95. | Zbl
,[6] On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Analyse non lineaire 17 (2) (2000) 219-245. | EuDML | Numdam | MR | Zbl
, ,[7] Uniqueness of the positive solution for singular non-linear boundary value problems, Syst. Sci Math. Sci. 6 (1993) 25-31. | MR | Zbl
, ,[8] Structure of positive radial solutions of semilinear elliptic equation, J. Differential Equations 133 (1997) 179-202. | MR | Zbl
, ,[9] Symmetry and isolated singularitiesof positive solutions of nonlinear elliptic equations, in: Nonlinear Partial Differential Equations in Engineering and Applied Science (Proc. Conf., Univ. Rhode Island, Kingston, RI, 1979), Lecture Notes in Pure Appl. Math., 54, Dekker, New York, 1980, pp. 255-273. | MR | Zbl
,[10] Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981) 525-598. | MR | Zbl
, ,[11] Ordinary Differential Equation, Wiley, New York, 1969. | Zbl
,[12] Existence and asymptotic behavior of nodal solution for semilinear elliptic equation, J. Differential Equations 106 (1993) 238-256. | MR | Zbl
,[13] The heavy rotating string - a nonlinear eigenvalue problem, Comm. Pure Appl. Math. 8 (1955) 395-408. | MR | Zbl
,[14] Uniqueness of positive solution of Δu−u+up=0 in RN, Arch. Rational Mech. Anal. 105 (1989) 243-266. | Zbl
,[15] Uniqueness of positive solution of Δu+f(u)=0 in an annulus, Differential Integral Equations 4 (1991) 583-596. | Zbl
, ,[16] Uniqueness and nonuniqueness for positive radial solutions of Δu+f(u,r)=0, Comm. Pure Appl. Math. 38 (1985) 67-108. | Zbl
, ,[17] Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. 5 (1965) 1408-1411. | Zbl
,Cité par Sources :