@article{AIHPC_2003__20_4_705_0, author = {Andre, Nelly and Bauman, Patricia and Phillips, Dan}, title = {Vortex pinning with bounded fields for the {Ginzburg-Landau} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {705--729}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2003}, doi = {10.1016/S0294-1449(02)00021-5}, zbl = {1040.35108}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/} }
TY - JOUR AU - Andre, Nelly AU - Bauman, Patricia AU - Phillips, Dan TI - Vortex pinning with bounded fields for the Ginzburg-Landau equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 705 EP - 729 VL - 20 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/ DO - 10.1016/S0294-1449(02)00021-5 LA - en ID - AIHPC_2003__20_4_705_0 ER -
%0 Journal Article %A Andre, Nelly %A Bauman, Patricia %A Phillips, Dan %T Vortex pinning with bounded fields for the Ginzburg-Landau equation %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 705-729 %V 20 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/ %R 10.1016/S0294-1449(02)00021-5 %G en %F AIHPC_2003__20_4_705_0
Andre, Nelly; Bauman, Patricia; Phillips, Dan. Vortex pinning with bounded fields for the Ginzburg-Landau equation. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 705-729. doi : 10.1016/S0294-1449(02)00021-5. http://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/
[1] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint. | MR
[2] The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (3-4) (1991) 153-206. | MR | Zbl
,[3] A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions, Europ. J. Appl. Math. 6 (1995) 97-114. | MR | Zbl
, , ,[4] Vortex pinning by inhomogeneities in type II superconductors, Phys. D 108 (4) (1997) 397-407. | MR | Zbl
, ,[5] The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359. | MR | Zbl
, ,[6] Vortices Monopoles, Birkhäuser, 1980. | MR | Zbl
, ,[7] Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. | MR | Zbl
,[8] Ginzburg-Landau equations and stable solutions in a rotational domain, SIAM J. Math. Anal. 27 (5) (1996) 1360-1385. | MR | Zbl
, ,[9] Ginzburg-Landau equation with magnetic effect: non-simply-connected domains, J. Math. Soc. Japan 50 (3) (1998) 663-684. | MR | Zbl
, ,[10] Superconducting weak links, Rev. Mod. Phys. 51 (1979) 101-159.
,[11] E. Sandier, S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annals IHP, Analyse non linéaire, to appear. | Numdam | MR | Zbl
[12] E. Sandier, S. Serfaty, On the energy of type II superconductors in the mixed phase, Rev. Math. Phys., to appear. | MR | Zbl
[13] Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents, Comm. Math. Phys. 179 (1) (1996) 257-263. | MR | Zbl
, ,[14] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (2) (1983) 253-268. | MR | Zbl
, ,Cité par Sources :