@article{AIHPC_2003__20_4_625_0, author = {Hauray, M}, title = {On two-dimensional hamiltonian transport equations with $\mathbb {L}_{loc}^p$ coefficients}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {625--644}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2003}, doi = {10.1016/S0294-1449(02)00015-X}, zbl = {1028.35148}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0294-1449(02)00015-X/} }
TY - JOUR AU - Hauray, M TI - On two-dimensional hamiltonian transport equations with $\mathbb {L}_{loc}^p$ coefficients JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 625 EP - 644 VL - 20 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0294-1449(02)00015-X/ DO - 10.1016/S0294-1449(02)00015-X LA - en ID - AIHPC_2003__20_4_625_0 ER -
%0 Journal Article %A Hauray, M %T On two-dimensional hamiltonian transport equations with $\mathbb {L}_{loc}^p$ coefficients %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 625-644 %V 20 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0294-1449(02)00015-X/ %R 10.1016/S0294-1449(02)00015-X %G en %F AIHPC_2003__20_4_625_0
Hauray, M. On two-dimensional hamiltonian transport equations with $\mathbb {L}_{loc}^p$ coefficients. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 625-644. doi : 10.1016/S0294-1449(02)00015-X. http://www.numdam.org/articles/10.1016/S0294-1449(02)00015-X/
[1] Sobolev Spaces, Academic Press, 1975, p. 54. | MR | Zbl
,[2] Renormalized solutions to the Vlassov equation with coefficients of bounded variation, Arch. Rat. Mech. Anal. 157 (2001) 75-90. | MR | Zbl
,[3] On two-dimensional hamiltonian transport equations with continuous coefficients, Differential Integral Equation 14 (8) (2001) 1015-1024. | MR | Zbl
, ,[4] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547. | MR | Zbl
, ,[5] Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris, Série I 326 (1998) 833-838. | MR | Zbl
,[6] Real Analysis, The MacMullan Company, 1963, Chapter 14. | MR | Zbl
,[7] Weakly Differentiable Functions, GTM, Springer-Verlag, 1989, p. 44. | MR | Zbl
,Cité par Sources :