@article{AIHPC_2003__20_4_543_0, author = {Ben Ayed, Mohamed and Chtioui, Hichem and Hammami, Mokhless}, title = {A {Morse} lemma at infinity for {Yamabe} type problems on domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {543--577}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2003}, doi = {10.1016/S0294-1449(02)00020-3}, mrnumber = {1981400}, zbl = {1109.35351}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0294-1449(02)00020-3/} }
TY - JOUR AU - Ben Ayed, Mohamed AU - Chtioui, Hichem AU - Hammami, Mokhless TI - A Morse lemma at infinity for Yamabe type problems on domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 543 EP - 577 VL - 20 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0294-1449(02)00020-3/ DO - 10.1016/S0294-1449(02)00020-3 LA - en ID - AIHPC_2003__20_4_543_0 ER -
%0 Journal Article %A Ben Ayed, Mohamed %A Chtioui, Hichem %A Hammami, Mokhless %T A Morse lemma at infinity for Yamabe type problems on domains %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 543-577 %V 20 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0294-1449(02)00020-3/ %R 10.1016/S0294-1449(02)00020-3 %G en %F AIHPC_2003__20_4_543_0
Ben Ayed, Mohamed; Chtioui, Hichem; Hammami, Mokhless. A Morse lemma at infinity for Yamabe type problems on domains. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 543-577. doi : 10.1016/S0294-1449(02)00020-3. http://www.numdam.org/articles/10.1016/S0294-1449(02)00020-3/
[1] Computation of the difference of topology at infinity for Yamabe-type problem on annuli-domains, Duke Math. J. 94 (1998), I: 215-229, II: 231-255. | MR | Zbl
, ,[2] On an elliptic problem with critical nonlinearity in expanding annuli, J. Funct. Anal. 163 (1999) 29-62. | MR | Zbl
, ,[3] Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., 182, Longman, Harlow, 1989. | MR | Zbl
,[4] An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J. 281 (1996) 323-466. | MR | Zbl
,[5] A. Bahri, Scalar-curvature problems in high dimension spheres, to appear.
[6] On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology on the domain, Comm. Pure Appl. Math. 41 (1988) 253-294. | MR | Zbl
, ,[7] The scalar curvature problem on the standard three-dimensional sphere, J. Func. Anal. 95 (1991) 106-172. | MR | Zbl
, ,[8] On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995) 67-94. | MR | Zbl
, , ,[9] On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J. 84 (1996) 633-667. | MR | Zbl
, , , ,[10] The scalar-curvature problem on higher dimensional spheres, Duke Math. J. 93 (1998) 379-424. | MR | Zbl
, , ,[11] Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985) 21-56. | MR | Zbl
, ,[12] The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52. | MR | Zbl
,[13] The existence of minimal immersion of 2-spheres, Ann. Math. (2) 113 (1981) 1-24. | MR | Zbl
, ,[14] A direct method for minimizing the Yang-Mills functional over 4-manifolds, Comm. Math. Phys. 86 (1982) 515-527. | MR | Zbl
,[15] A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z. 187 (1984) 511-517. | EuDML | MR | Zbl
,[16] Path-connected Yang-Mills moduli spaces, J. Differential Geom. 19 (1984) 337-392. | MR | Zbl
,Cité par Sources :