@article{AIHPC_2003__20_1_37_0, author = {Shargorodsky, E. and Toland, J. F.}, title = {A {Riemann-Hilbert} problem and the {Bernoulli} boundary condition in the variational theory of {Stokes} waves}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {37--52}, publisher = {Elsevier}, volume = {20}, number = {1}, year = {2003}, zbl = {1045.35113}, mrnumber = {1958161}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2003__20_1_37_0/} }
TY - JOUR AU - Shargorodsky, E. AU - Toland, J. F. TI - A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 37 EP - 52 VL - 20 IS - 1 PB - Elsevier UR - http://www.numdam.org/item/AIHPC_2003__20_1_37_0/ LA - en ID - AIHPC_2003__20_1_37_0 ER -
%0 Journal Article %A Shargorodsky, E. %A Toland, J. F. %T A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 37-52 %V 20 %N 1 %I Elsevier %U http://www.numdam.org/item/AIHPC_2003__20_1_37_0/ %G en %F AIHPC_2003__20_1_37_0
Shargorodsky, E.; Toland, J. F. A Riemann-Hilbert problem and the Bernoulli boundary condition in the variational theory of Stokes waves. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 1, pp. 37-52. http://www.numdam.org/item/AIHPC_2003__20_1_37_0/
[1] Some remarks on the theory of surface waves of finite amplitude, Soviet Math. Dokl. 35 (3) (1987) 599-603, See also loc. cit. 647-650. | MR | Zbl
,[2] The regularity and local bifurcation of Stokes waves, Arch. Rational Mech. Anal. 152 (3) (2000) 207-240. | MR | Zbl
, , ,[3] The sub-harmonic bifurcation of Stokes waves, Arch. Rational Mech. Anal. 152 (3) (2000) 241-270. | MR | Zbl
, , ,[4] Analytic description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping), Phys. Lett. A 1 (1996) 73-79.
, , , ,[5] Boundary Value Problems, Pergamon Press, Oxford, 1966. | MR | Zbl
,[6] Bounded Analytic Functions, Academic Press, New York, 1981. | MR | Zbl
,[7] Introduction to Hp Spaces, Cambridge University Press, Cambridge, 1999. | MR | Zbl
,[8] A note on harmonic functions and a hydrodynamic application, Proc. Amer. Math. Soc. 3 (1952) 111-113. | MR | Zbl
,[9] Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997. | MR | Zbl
, ,[10] The Stokes and Krasovskii conjectures for the wave of greatest height, in: Studies in Applied Math., 98, 1997, pp. 311-334, In pre-print-form: Univ. of Wisconsin Mathematics Research Center Report Number 2041, 1979 (sic). | MR | Zbl
,[11] Singular Integral Equations, Wolters-Noordhoff Publishing, Groningen, 1972. | MR | Zbl
,[12] Non-uniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals, Math. USSR Izvestiya 38 (2) (1992) 333-357. | Zbl
,[13] Real and Complex Analysis, McGraw-Hill, New York, 1986. | Zbl
,[14] Stokes waves, Topological Methods in Nonlinear Analysis 7 (1996) 1-48, Topological Methods in Nonlinear Analysis 8 (1997) 412-414. | MR | Zbl
,[15] Regularity of Stokes waves in Hardy spaces and in spaces of distributions, J. Math. Pure Appl. 79 (9) (2000) 901-917. | MR | Zbl
,[16] On a pseudo-differential equation for Stokes waves, Arch. Rational Mech. Anal. 162 (2002) 179-189. | MR | Zbl
,[17] Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, 1986. | MR | Zbl
,[18] Trigonometric Series I & II, Cambridge University Press, Cambridge, 1959. | MR | Zbl
,