@article{AIHPC_2002__19_5_705_0, author = {Kawohl, Bernd and Sweers, Guido}, title = {Inheritance of symmetry for positive solutions of semilinear elliptic boundary value problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {705--714}, publisher = {Elsevier}, volume = {19}, number = {5}, year = {2002}, mrnumber = {1922474}, zbl = {1006.35038}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2002__19_5_705_0/} }
TY - JOUR AU - Kawohl, Bernd AU - Sweers, Guido TI - Inheritance of symmetry for positive solutions of semilinear elliptic boundary value problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 705 EP - 714 VL - 19 IS - 5 PB - Elsevier UR - http://www.numdam.org/item/AIHPC_2002__19_5_705_0/ LA - en ID - AIHPC_2002__19_5_705_0 ER -
%0 Journal Article %A Kawohl, Bernd %A Sweers, Guido %T Inheritance of symmetry for positive solutions of semilinear elliptic boundary value problems %J Annales de l'I.H.P. Analyse non linéaire %D 2002 %P 705-714 %V 19 %N 5 %I Elsevier %U http://www.numdam.org/item/AIHPC_2002__19_5_705_0/ %G en %F AIHPC_2002__19_5_705_0
Kawohl, Bernd; Sweers, Guido. Inheritance of symmetry for positive solutions of semilinear elliptic boundary value problems. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 5, pp. 705-714. http://www.numdam.org/item/AIHPC_2002__19_5_705_0/
[1] Point-Group Theory Tables, Clarendon Press, Oxford, 1994.
, ,[2] Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys. 5 (1988) 237-275. | MR | Zbl
, ,[3] On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.) 22 (1991) 1-37. | MR | Zbl
, ,[4] A nonlinear boundary value problem with many positive solutions, J. Differential Equations 54 (1984) 429-437. | MR | Zbl
,[5] Regular Polytopes, Dover Publications, New York, 1973. | MR | Zbl
,[6] The effect of the domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations 74 (1988) 120-156. | MR | Zbl
,[7] On the existence of a maximal weak solution for a semilinear elliptic equation, Differential Integral Equations 2 (1989) 533-540. | MR | Zbl
, ,[8] An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, 128, Cambridge University Press, Cambridge, 2000. | MR | Zbl
,[9] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209-243. | MR | Zbl
, , ,[10] A geometric property of level sets of solutions to semilinear elliptic Dirichlet problems, Applicable Anal. 16 (1983) 229-233. | MR | Zbl
,[11] Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discrete Continuous Dynam. Systems 6 (2000) 683-690. | MR | Zbl
,[12] A. Strong comparison theorems for elliptic equations of second order, J. Math. Mech. 10 (1961) 431-440. | MR | Zbl
,[13] Symmetry, an Introduction to Group Theory and Its Applications, Pergamon Press, Oxford, 1963. | MR | Zbl
,[14] Semilinear elliptic problems on domains with corners, Comm. Partial Differential Equations 14 (1989) 1229-1247. | MR | Zbl
,[15] Lecture notes on maximum principles, December 2000, http://aw.twi.tudelft.nl/~sweers/maxpr/maxprinc.pdf.
,