@article{AIHPC_2002__19_5_617_0, author = {Clarenz, Ulrich and von der Mosel, Heiko}, title = {Isoperimetric inequalities for parametric variational problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {617--629}, publisher = {Elsevier}, volume = {19}, number = {5}, year = {2002}, mrnumber = {1922471}, zbl = {1014.53009}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2002__19_5_617_0/} }
TY - JOUR AU - Clarenz, Ulrich AU - von der Mosel, Heiko TI - Isoperimetric inequalities for parametric variational problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 617 EP - 629 VL - 19 IS - 5 PB - Elsevier UR - http://www.numdam.org/item/AIHPC_2002__19_5_617_0/ LA - en ID - AIHPC_2002__19_5_617_0 ER -
Clarenz, Ulrich; von der Mosel, Heiko. Isoperimetric inequalities for parametric variational problems. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 5, pp. 617-629. http://www.numdam.org/item/AIHPC_2002__19_5_617_0/
[1] A proof of a general isoperimetric inequality for surfaces, Math. Z. 162 (3) (1978) 245-261. | MR | Zbl
, ,[2] Subharmonic functions and surfaces of negative curvature, Trans. Am. Math. Soc. 35 (1933) 662-664. | MR | Zbl
, ,[3] U. Clarenz, Enclosure theorems for extremals of elliptic parametric functionals, Calc. Var., online publication DOI 10.1007/s005260100128, 2001. | MR | Zbl
[4] Compactness theorems and an isoperimetric inequality for critical points of elliptic parametric functionals, Calc. Var. 12 (2001) 85-107. | MR | Zbl
, ,[5] Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, Interscience, New York, 1950. | MR | Zbl
,[6] Minimal Surfaces, Vol. I, Grundlehren math. Wiss., 295, Springer, Berlin, 1992. | Zbl
, , , ,[7] The number of branch points of surfaces of bounded mean curvature, J. Differential Geom. 4 (1970) 227-235. | MR | Zbl
, ,[8] Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie, Math. Z. 112 (1969) 205-213. | MR | Zbl
,[9] On two-dimensional variational problems, Calc. Var. 9 (1999) 249-267. | MR | Zbl
, ,[10] S. Hildebrandt, H. von der Mosel, Plateau's problem for parametric double integrals: I. Existence and regularity in the interior, Preprint 88 MPI f. Math. Leipzig, 2001. Preprint 745 SFB 256 Univ. Bonn, 2001, to appear in Comm. Pure. Appl. Math. | MR | Zbl
[11] Introduction of isothermal parameters into a Riemannian metric by the continuity method, Analysis 19 (1999) 235-243. | MR | Zbl
,