A Glimm type functional for a special Jin-Xin relaxation model
Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 1, pp. 19-42.
@article{AIHPC_2001__18_1_19_0,
     author = {Bianchini, Stefano},
     title = {A {Glimm} type functional for a special {Jin-Xin} relaxation model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {19--42},
     publisher = {Elsevier},
     volume = {18},
     number = {1},
     year = {2001},
     zbl = {0981.35037},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2001__18_1_19_0/}
}
TY  - JOUR
AU  - Bianchini, Stefano
TI  - A Glimm type functional for a special Jin-Xin relaxation model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2001
SP  - 19
EP  - 42
VL  - 18
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/item/AIHPC_2001__18_1_19_0/
LA  - en
ID  - AIHPC_2001__18_1_19_0
ER  - 
%0 Journal Article
%A Bianchini, Stefano
%T A Glimm type functional for a special Jin-Xin relaxation model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2001
%P 19-42
%V 18
%N 1
%I Elsevier
%U http://www.numdam.org/item/AIHPC_2001__18_1_19_0/
%G en
%F AIHPC_2001__18_1_19_0
Bianchini, Stefano. A Glimm type functional for a special Jin-Xin relaxation model. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 1, pp. 19-42. http://www.numdam.org/item/AIHPC_2001__18_1_19_0/

1 Bianchini S., Bressan A., BV solutions for a class of viscous hyperbolic systems, Indiana Univ. Math. J. (to appear). | MR | Zbl

2 Berenstein C.A, Gay R, Complex Variables. An Introduction, Springer, New York, 1991. | MR | Zbl

3 Bressan A., Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press (to appear). | Zbl

4 Bressan A, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal. Vol. 130 (1995) 205-230. | MR | Zbl

5 Bressan A, Liu T.P, Yang T, L1 stability estimates for n×n conservation laws, Arch. Rational Mech. Anal. Vol. 149 (1) (1999) 1-22. | MR | Zbl

6 Bressan A, Shen W, BV estimates for multicomponent chromatography with relaxation, Discrete Cont. Dynamical Systems Vol. 6 (1) (2000) 21-38. | MR | Zbl

7 Chen G.Q, Liu T.P, Zero relaxation and dissipation limits for systems of conservation laws, Comm. Pure Appl. Math. Vol. 43 (1993) 755-781. | MR | Zbl

8 Jin S, Xin Z.P, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. Vol. 48 (1995) 235-277. | MR | Zbl

9 Liu T.P, Hyperbolic conservation laws with relaxation, Commun. Math. Phys. Vol. 108 (1987) 153-175. | MR | Zbl

10 Natalini R, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math. Vol. 49 (1998) 795-823. | MR | Zbl

11 Natalini R, Recent results on hyperbolic relaxation problems, in: Freistühler H (Ed.), Analysis of Systems of Conservation Laws, Chapman & Hall/CRC, 1998, pp. 128-198. | MR | Zbl