@article{AIHPC_2000__17_6_779_0, author = {Godin, Paul}, title = {The blow-up curve of solutions of mixed problems for semilinear wave equations with exponential nonlinearities in one space dimension, {II}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {779--815}, publisher = {Gauthier-Villars}, volume = {17}, number = {6}, year = {2000}, mrnumber = {1804655}, zbl = {0977.35088}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2000__17_6_779_0/} }
TY - JOUR AU - Godin, Paul TI - The blow-up curve of solutions of mixed problems for semilinear wave equations with exponential nonlinearities in one space dimension, II JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 779 EP - 815 VL - 17 IS - 6 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_2000__17_6_779_0/ LA - en ID - AIHPC_2000__17_6_779_0 ER -
%0 Journal Article %A Godin, Paul %T The blow-up curve of solutions of mixed problems for semilinear wave equations with exponential nonlinearities in one space dimension, II %J Annales de l'I.H.P. Analyse non linéaire %D 2000 %P 779-815 %V 17 %N 6 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_2000__17_6_779_0/ %G en %F AIHPC_2000__17_6_779_0
Godin, Paul. The blow-up curve of solutions of mixed problems for semilinear wave equations with exponential nonlinearities in one space dimension, II. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 6, pp. 779-815. http://www.numdam.org/item/AIHPC_2000__17_6_779_0/
[1] The blow-up boundary for nonlinear wave equations, Trans. Am. Math. Soc. 297 (1) (1986) 223-241. | MR | Zbl
, ,[2] Differentiability of the blow-up curve for one dimensional nonlinear wave equations, Arch. Ration. Mech. Anal. 91 (1985) 83-98. | MR | Zbl
, ,[3] The blow-up curve of solutions of mixed problems for semilinear wave equations with exponenetial nonlinearities in one space dimension, I, to appear in Calc. Var. Partial Differential Equations. | MR | Zbl
,[4] Ordinary Differential Equations, Wiley, New York, 1964. | MR | Zbl
,[5] Lectures on Ordinary Differential Equations, Wiley, New York, 1964. | Zbl
,[6] On solutions of nonlinear wave equations, Comm. Pure Appl. Math. 10 (1957) 523-530. | MR | Zbl
,[7] The blow-up problem for exponential nonlinearities, Comm. Partial Differential Equations 21 (1-2) (1996) 125-162. | MR | Zbl
,