@article{AIHPC_2000__17_5_651_0, author = {Jabin, Pierre-Emmanuel}, title = {Macroscopic limit of {Vlasov} type equations with friction}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {651--672}, publisher = {Gauthier-Villars}, volume = {17}, number = {5}, year = {2000}, mrnumber = {1791881}, zbl = {0965.35013}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2000__17_5_651_0/} }
TY - JOUR AU - Jabin, Pierre-Emmanuel TI - Macroscopic limit of Vlasov type equations with friction JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 651 EP - 672 VL - 17 IS - 5 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_2000__17_5_651_0/ LA - en ID - AIHPC_2000__17_5_651_0 ER -
Jabin, Pierre-Emmanuel. Macroscopic limit of Vlasov type equations with friction. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 5, pp. 651-672. http://www.numdam.org/item/AIHPC_2000__17_5_651_0/
[1] Homogenization and two-scale convergence, SIAM J. Math. Anal. XXIII (12) (1992) 1482-1518. | MR | Zbl
,[2] Global existence of a weak solution of Vlasov's system of equations, USSR Comp. Math. and Math. Phys. 15 (1975) 131-141. | MR
,[3] Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. PDE, to appear. | MR | Zbl
,[4] Solutions globales d'équations du type Vlasov-Poisson, C.R. Acad. Sci. Paris Sér. I 307 (1988) 655-658. | MR | Zbl
, ,[5] Long time behaviour of the two-dimensional Vlasov equation with a strong external magnetic field, INRIA Report, 3428, 1998.
, ,[6] Regularity and propagation of moments in some nonlinear Vlasov systems, Work in preparation.
, , ,[7] The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. | MR | Zbl
,[8] The Vlasov-Poisson system with strong magnetic field, LMENS 99 (2) (1999). | MR | Zbl
, ,[9] Defect measures of the Vlasov-Poisson system, Comm. PDE 21 (1996) 363-394.
,[10] A general convergence result for a functional related to the theory of homogeneization, SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl
,[11] Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math. 15 (1998) 51-74. | MR
,[12] On the motion of dispersed bubbles in a potential flow, Siam J. Appl. Math, to appear. | Zbl
, , ,[13] On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Math. Meth. in the Appl. Sci. 3 (1981) 229-248. | MR | Zbl
,[14] Large time concentrations for solutions to kinetic equations with energy dissipation, Comm. PDE, to appear. | MR | Zbl
,[15] Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid, in: Bellomo N., Pulvirenti M. (Eds.), Modelling in Applied Sciences, a Kinetic Theory Approach, to appear. | MR | Zbl
, ,[16] Particle distribution functions in suspensions, Phys. Fluids A 1 (1989) 1632-1641. | MR | Zbl
, ,[17] Kinetic theory for bubbly flow I and II, SIAM J. Appl. Math. 56 (1996) 327-371. | MR | Zbl
, ,[18] The Euler-Poisson system with pressure zero as singular limit of the Vlasov-Poisson system, the spherically symmetric case, Preprint.
,