Macroscopic limit of Vlasov type equations with friction
Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 5, pp. 651-672.
@article{AIHPC_2000__17_5_651_0,
     author = {Jabin, Pierre-Emmanuel},
     title = {Macroscopic limit of {Vlasov} type equations with friction},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {651--672},
     publisher = {Gauthier-Villars},
     volume = {17},
     number = {5},
     year = {2000},
     mrnumber = {1791881},
     zbl = {0965.35013},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2000__17_5_651_0/}
}
TY  - JOUR
AU  - Jabin, Pierre-Emmanuel
TI  - Macroscopic limit of Vlasov type equations with friction
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2000
SP  - 651
EP  - 672
VL  - 17
IS  - 5
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_2000__17_5_651_0/
LA  - en
ID  - AIHPC_2000__17_5_651_0
ER  - 
%0 Journal Article
%A Jabin, Pierre-Emmanuel
%T Macroscopic limit of Vlasov type equations with friction
%J Annales de l'I.H.P. Analyse non linéaire
%D 2000
%P 651-672
%V 17
%N 5
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_2000__17_5_651_0/
%G en
%F AIHPC_2000__17_5_651_0
Jabin, Pierre-Emmanuel. Macroscopic limit of Vlasov type equations with friction. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 5, pp. 651-672. http://www.numdam.org/item/AIHPC_2000__17_5_651_0/

[1] Allaire G., Homogenization and two-scale convergence, SIAM J. Math. Anal. XXIII (12) (1992) 1482-1518. | MR | Zbl

[2] Arsenev A.A., Global existence of a weak solution of Vlasov's system of equations, USSR Comp. Math. and Math. Phys. 15 (1975) 131-141. | MR

[3] Brenier Y., Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. PDE, to appear. | MR | Zbl

[4] Diperna R.J., Lions P.L., Solutions globales d'équations du type Vlasov-Poisson, C.R. Acad. Sci. Paris Sér. I 307 (1988) 655-658. | MR | Zbl

[5] Frénod E., Sonnendrücker E., Long time behaviour of the two-dimensional Vlasov equation with a strong external magnetic field, INRIA Report, 3428, 1998.

[6] Gasser I., Jabin P.-E., Perthame B., Regularity and propagation of moments in some nonlinear Vlasov systems, Work in preparation.

[7] Glassey R.T., The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. | MR | Zbl

[8] Golse F., Saint-Raymond L., The Vlasov-Poisson system with strong magnetic field, LMENS 99 (2) (1999). | MR | Zbl

[9] Grenier E., Defect measures of the Vlasov-Poisson system, Comm. PDE 21 (1996) 363-394.

[10] N'Guetseng G., A general convergence result for a functional related to the theory of homogeneization, SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl

[11] Hamdache K., Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math. 15 (1998) 51-74. | MR

[12] Herrero H., Lucquin-Desreux B., Perthame B., On the motion of dispersed bubbles in a potential flow, Siam J. Appl. Math, to appear. | Zbl

[13] Horst E., On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Math. Meth. in the Appl. Sci. 3 (1981) 229-248. | MR | Zbl

[14] Jabin P.-E., Large time concentrations for solutions to kinetic equations with energy dissipation, Comm. PDE, to appear. | MR | Zbl

[15] Jabin P.-E., Perthame B., Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid, in: Bellomo N., Pulvirenti M. (Eds.), Modelling in Applied Sciences, a Kinetic Theory Approach, to appear. | MR | Zbl

[16] Rubinstein J., Keller J.B., Particle distribution functions in suspensions, Phys. Fluids A 1 (1989) 1632-1641. | MR | Zbl

[17] Russo G., Smereka P., Kinetic theory for bubbly flow I and II, SIAM J. Appl. Math. 56 (1996) 327-371. | MR | Zbl

[18] Sandor V., The Euler-Poisson system with pressure zero as singular limit of the Vlasov-Poisson system, the spherically symmetric case, Preprint.