Minimization properties of Hill's orbits and applications to some N-body problems
Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 5, pp. 617-650.
@article{AIHPC_2000__17_5_617_0,
     author = {Arioli, Gianni and Gazzola, Filippo and Terracini, Susanna},
     title = {Minimization properties of {Hill's} orbits and applications to some {N-body} problems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {617--650},
     publisher = {Gauthier-Villars},
     volume = {17},
     number = {5},
     year = {2000},
     mrnumber = {1791880},
     zbl = {0977.70006},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2000__17_5_617_0/}
}
TY  - JOUR
AU  - Arioli, Gianni
AU  - Gazzola, Filippo
AU  - Terracini, Susanna
TI  - Minimization properties of Hill's orbits and applications to some N-body problems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2000
SP  - 617
EP  - 650
VL  - 17
IS  - 5
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_2000__17_5_617_0/
LA  - en
ID  - AIHPC_2000__17_5_617_0
ER  - 
%0 Journal Article
%A Arioli, Gianni
%A Gazzola, Filippo
%A Terracini, Susanna
%T Minimization properties of Hill's orbits and applications to some N-body problems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2000
%P 617-650
%V 17
%N 5
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_2000__17_5_617_0/
%G en
%F AIHPC_2000__17_5_617_0
Arioli, Gianni; Gazzola, Filippo; Terracini, Susanna. Minimization properties of Hill's orbits and applications to some N-body problems. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 5, pp. 617-650. http://www.numdam.org/item/AIHPC_2000__17_5_617_0/

[1] Albouy A., Chenciner A., Le problème des n corps et les distances mutuelles, Invent. Math. 131 (1998) 151-184. | MR | Zbl

[2] Ambrosetti A., Critical points and nonlinear variational problems, Mémoire de la Société Mathématique de France 49, 1992. | Numdam | MR | Zbl

[3] Ambrosetti A., Coti Zelati V., Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, 1993. | MR | Zbl

[4] Bessi U., Coti Zelati V., Symmetries and noncollision closed orbits for planar N-body-type potentials, Nonlin. Anal. TMA 16 (1991) 587-598. | MR | Zbl

[5] Chenciner A., Desolneux N., Minima de l'intégrale d'action et équilibres relatifs de n corps, C. R. Acad. Sci. Paris Ser. I Math. 326 (1998) 1209-1212 (Erratum: C. R. Acad. Sci. Paris Ser. I Math. 327 (1998) 193). | MR | Zbl

[6] Coti Zelati V., A class of periodic solutions of the N-body problem, Celestial Mech. Dynam. Astronom. 46 (2) (1989) 177-186. | MR | Zbl

[7] Coti Zelati V., Periodic solutions for N-body type problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (5) (1990) 477-492. | Numdam | MR | Zbl

[8] Degiovanni M., Giannoni F., Dynamical systems with Newtonian type potentials, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 15 (1988) 467-494. | Numdam | MR | Zbl

[9] Degiovanni M., Giannoni F., Marino A., Dynamical systems with Newtonian type potentials, Atti Acc. Lincei Rend. Fis. Mat. 8 (81) (1987) 271-278. | MR | Zbl

[10] Gordon W., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975) 113-135. | MR | Zbl

[11] Gordon W., A minimizing property of Keplerian orbits, Amer. J. Math. 99 (5) (1977) 961-971. | MR | Zbl

[12] Meyer K.R., Hall G.R., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Springer, 1991. | MR | Zbl

[ 13] Moser J., Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, 1973. | MR | Zbl

[ 14] Moser J., Siegel C.M., Lectures on Celestial Mechanics, Springer, 1971. | MR | Zbl

[15] Sbano L., Collision solutions of the planar Newtonian three-body problem are not minima of the action functional, Nonlin. Diff. Eq. Appl. (1998).

[16] Serra E., Terracini S., Collisionless periodic solutions to some three-body problems, Arch. Rat. Mech. Anal. 120 (4) (1992) 305-325. | MR | Zbl

[17] Serra E., Terracini S., Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlin. Anal. TMA 22 (1) (1994) 45-62. | MR | Zbl